Сайт студентов физиков для студентов физиков!
Главная Учебные материалы по физике Напряженность поля тонкого стержня конечной длины

Напряженность поля тонкого стержня конечной длины

при непрерывном

распределении зарядов

В качестве примера получения выражения для напряженности поля с помощью принципа суперпозиции найдем напряженность поля тонкого стержня конечной длины, равномерно заряженного с линейной плотностью заряда t

Выберем бесконечно малый элемент dl стержня с зарядом dq. Поскольку напряженности от различных элементов направлены по-разному, введем оси проекций х и у. Итегрируя, найдем результирующие напряженности Ех и Еу.

dE— напряженность от элемента стержня dl с зарядом dq = t×dl, dEх и dEy – проекции dE на направления х и у.

Чтобы проинтегрировать, сведем к одной переменной a

длина дуги АС при малых углах, она же из треугольника

(А, С, dl)

модуль

напряженности

Для бесконечно длинной нити a1 ® 0, a2 ® 180о, следовательно, Еу = 0 и Е = Ех (cos180o = -1),

r – расстояние от точки, в которой определяется напряженность, до нити.

Этот пример показывает, что вычисление напряженности полей представляет собой достаточно сложную задачу даже в нашем случае, когда мы не учитывали поле вблизи концов стержня.

Основной задачей электростатики является вычисление полей заряженных тел. Найти напряженность поля заряженного тела можно с помощью:

1)  принципа суперпозиции — это сложная математическая задача, решаемая только в некоторых простых случаях или

2)  теоремы Гаусса, которая упрощает расчеты, но только в случае бесконечной плоскости, бесконечной нити (цилиндра) или сфер и шаров (см. ниже).

Теорема Гаусса.

Сначала введем понятие «поток вектора» — это скалярная величина

(Н×м2/Кл = В×м)

элементарный поток вектора напряженности Е,

n – нормаль к площадке, dS – элементарная площадка – это такая малая площадка, в пределах которой Е = const; Еn – проекция вектора Е на направление нормали n

поток вектора напряженности

через конечную площадку S

-²- -²- -²-через замкнутую поверхность S

при дискретном распределении зарядов

Теорема Гаусса: «Поток вектора напряженности через любую замкнутую поверхность равен алгебраической сумме зарядов, охватываемых этой поверхностью, деленной на eо»

(eо – электрическая постоянная)

при непрерывном распределении зарядов

Применение теоремы Гаусса.

Чтобы найти напряженность с помощью теорем Гаусса, нужно взять интеграл. А как его взять, если мы Е еще только пытаемся найти? Кроме того, под интегралом «мешает» cosa. Надо суметь выбрать такую замкнутую поверхность (ее удобно называть гауссовой), в каждой точке которой было бы Е = const, и cosa = const. Тогда в левой части теоремы Е и cosa можно будет вынести из-под знака интеграла. Поэтому практически теорему Гаусса можно применить только в следующих случаях: сфера, шар, длинная нить, длинный цилиндр, бесконечная плоскость.

1) Сфера, заряженная с поверхностной плотностью заряда s (Кл/м2)

Рассмотрим области : 1) вне сферы () и внутри ее (). Выберем поверхности: 1) S1 и 2) S2 – обе поверхности – сферы, концентрические с заряженной сферой. Сначала найдем потоки вектора Е через выбранные поверхности, а затем воспользуемся теоремой.

(¨)

Потоки вектора Е через S1 () и S2. ()

E^n, a = 0, cosa = 1.

(¨¨)

по теореме Гаусса;

F2 = 0, т. к. S2 не охватывает никаких зарядов. Приравнивая потоки из (¨) и (¨¨), найдем E(r).

q = s×2pR2 – полный заряд сферы

Вне сферы поле такое же, как поле точечного заряда. На границе сферы происходит скачок напряженности.

2)Тонкая длинная нить, заряженная с линейной плотностью заряда t (Кл/м)

В этом случае «гауссова» поверхность – соосный с нитью цилиндр длиной l.

Сначала найдем поток, потом воспользуемся теоремой Гаусса.

Разобьем поверхность цилиндра на боковую и две торцевых. Для боковой — cosa = 1, для торцевых — cosa = 0.