Сайт студентов физиков для студентов физиков!
Главная Учебные материалы по физике Проводники в электростатическом поле

Проводники в электростатическом поле

Проводники в электростатическом поле.

При внесении незаряженного проводника во внешнее электростатическое поле на его поверхности появляются заряды. Явление перераспределения зарядов в проводнике при внесении его во внешнее электростатическое поле, называется электростатической индукцией (наведением зарядов, электризацией посредством наведения).

1) Если в поле внести незаряженный металлический проводник из двух контактирующих частей, на их поверхностях возникнут индуцированные заряды. Если эти части развести с помощью изолирующих ручек, то каждая часть окажется заряженной соответствующим зарядом (см. рис.). При этом напряженность поля внутри проводников всегда равна нулю.

2) Незаряженный проводник, внесенный в электростатическое поле искажает поле (см. рис.- линии со стрелками – силовые линии внешнего однородного поля; перпендикулярные им линии – это эквипотенциальные поверхности; ± — обозначены наведенные заряды).

3) Величина наведенного (индуцированного) заряда всегда меньше величины наводящего заряда. Только в случае, когда наводящий заряд находится внутри металлической полости, наведенный заряд оказывается таким же по величине, но при этом поверхностная плотность зарядов оказывается различной. На рисунке: точечный заряд окружен незаряженным металлическим полым телом. И внутренняя и внешняя поверхности сферические, но центры их смещены. На внешней поверхности индуцированный заряд распределяется равномерно, а на внутренней – сложным образом.

4) Наведенные заряды влияют на электрическое поле наводящих зарядов.

5). Индуцированный заряд возникает и на уже заряженном теле. Если рядом находятся два положительных заряда +Q и +q, они должны отталкиваться. Но наведенный отрицательный заряд на одном из зарядов может оказаться бόльшим, чем его собственный заряд, и заряды будут притягиваться друг к другу.

Электроемкость.

Все проводники обладают свойством накапливать электрические заряды. Это свойство называется электроемкостью. Количественная характеристика этого свойства также называется электроемкостью [10] и обозначается С. Различают электроемкость уединенного проводника (собственная емкость), находящегося вдали от других проводников, и взаимную емкость системы из двух и более проводников.

(фарада) (§)

(Ф = Кл/В)

емкость уединенного проводника (собственная емкость)– численно она равна тому заряду, который нужно сообщить проводнику, чтобы изменить его потенциал на единицу

(§§)

взаимная емкость конденсатора (состоящего из 2-х обкладок)- численно она равна тому заряду, который нужно сообщить конденсатору, чтобы изменить разность потенциалов между обкладками на единицу

Фарада – единица измерения емкости в СИ — является чрезвычайно большой величиной. Так, емкость земного шара примерно 7×10-4 Ф, поэтому обычно пользуются микро-, нано — и пикофарадами.

Собственная емкость зависит только от формы и размеров проводника и от диэлектрических свойств окружающей среды (вакуум, воздух, керосин,…) и не зависит ни от материала проводника (Fe, Cu, Al,…), ни от того, заряжен он или нет.[11] Каждый уединенный проводник обладает «своей» емкостью, если, например, изогнуть кусок проволоки или сделать вмятину в шарике, их емкость изменится.

Вычисление емкости представляет собой сложную математическую задачу, и если проводник имеет сложную конфигурацию, то аналитически эта задача не решается.

Вычислим электроемкость уединенной сферы (шара).

потенциал заряженной сферы (шара); подставим в (§), получим:

емкость сферы (шара); в вакууме зависит только от радиуса сферы (шара)

Взаимная емкость также зависит от формы и размеров проводников и, кроме того, от их взаимного расположения. Система из двух проводников называется конденсатором в том случае, когда расстояние между ними достаточно мало, и электрическое поле (когда они заряжены) сосредоточено в основном между проводниками. Сами проводники при этом называют обкладками. Вычислить емкость такой системы можно для обкладок простей формы: плоских, сферических и цилиндрических (без учета краевых эффектов).

Вычислим емкость плоского конденсатора – это две металлические параллельные пластины (обкладки) одинаковых размеров, разделенные слоем диэлектрика (вакуум, воздух и др.). Если расстояние между пластинами значительно меньше размеров пластин: d << L, H, поле между пластинами можно считать однородным. В действительности вблизи краев пластин поле неоднородно (см. рис., на котором показана половина плоского конденсатора, линии со стрелками – это силовые линии, без стрелок – эквипотенциальные поверхности). Учесть эти краевые эффекты трудно.

q — заряд на обкладке

конденсатора;

Dj — разность потенциалов

для однородного поля;

S – площадь пластин. Подставим в (§§):

емкость плоского конденсатора

Цилиндрический конденсатор. Это два соосных металлических цилиндра, в промежутке между которыми – диэлектрик (вакуум, воздух и др.). Длина цилиндров-обкладок l, радиусы R и r (см. рис.). Если сообщить внутренней обкладке заряд +q, на внешней обкладке индуцируются заряды —q и +q, положительный заряд с внешней поверхности наружной обкладки уводится в землю. Поле конденсатора в основном сосредоточено между обкладками, если расстояние между ними (Rr) << l. Краевые эффекты не учитываем.

разность потенциалов между обкладками, t — линейная плотность заряда, q – заряд на всей длине l. Подставив в (§§), получим:

емкость цилиндрического конденсатора длиной l

Сферический конденсатор. Это две металлические концентрические сферы, разделенные сферическим слоем диэлектрика. Если внутренней обкладке сообщить заряд +q, на внутренней поверхности внешней обкладки индуцируется заряд —q, а на внешней ее поверхности +q. Этот заряд отводится в землю за счет заземления (см. рис.). Поле такого конденсатора сосредоточено только между обкладками.

разность потенциалом между обкладками.

Подставив в (§§), получим:

емкость сферического конденсатора

При наличии диэлектрика с диэлектрической

проницаемостью e во всех формулах надо заменить

(см. ниже — диэлектрики):

e0 ® ee0