ВУЗы по физике Готовые работы по физике Как писать работы по физике Примеры решения задач по физике Решить задачу по физике онлайн

Метод мма для колебательных систем с малыми нелинейностями


(4.15)

Для свободных колебаний системы с нелинейностью (P = 0) из (4.14) получим уравнения

; .

(4.16)

Здесь w — основная частота свободных колебаний нелинейной системы, заменившая частоту w1, которая задавалась внешним воздействием. Из последней системы можно найти соотношение между амплитудами гармоник

.

Нетрудно убедиться, что из системы (4.16) можно получить частоту свободных колебаний:

.

Как мы видим, w отличается от w0 лишь на величину порядка e.

Иначе обстоит дело при наличии воздействия (P ¹ 0). Тогда частота возбуждаемого колебания будет задаваться внешним воздействием. В рассматриваемом случае частота w0 близка к 3w1. В результате соотношение между амплитудами основного колебания и его третьей гармоники должно быть совсем иным.

Для определения a1 и a3 имеем систему (4.14). Заменяя из (4.16) в первом уравнении a1 на w2a1, получаем

,

откуда выражение для амплитуды основной гармоники

.

Здесь мы учли, что w » w0 (с точностью до величины порядка e), а w0 » 3w1.

Рис. 31. Амплитуда третьей гармоники.

Для определения a3 воспользуемся вторым соотношением из (4.14), тогда, подставив его во второе уравнение системы (4.15), получим

.

Введём относительную расстройку x:

,

тогда получим уравнение третьей степени относительно a3:

.

Так как e ¹ 0, то на e можно сократить

.

(4.17)

Это решение описывает установившийся процесс. Таким образом, нелинейность зависит от отношения x/e. Зависимость амплитуды третьей гармоники от этого отношения представлена на рис. 31.

4.4. Метод ММА для колебательных систем с малыми нелинейностями и потерями при гармоническом силовом воздействии

Общая запись уравнений для неавтономной системы первого порядка при силовом воздействии:

.

(4.18)

В предельном случае если m ® 0, тогда получаем неоднородное ДУ вида

,

решение которого будет x0(t) = acos(w1t), где амплитуда колебаний

.

Возвращаясь к (4.18) и считая нелинейность слабой, будем искать решение в виде

.

(4.19)

Подставляя это решение в исходное уравнение, можно записать

.

Видно, что это уравнение вида (3.8). Для возможности применения метода ММА необходимо потребовать, чтобы внешняя сила была мала по амплитуде и имела бы тот же порядок малости, что и малые силы, связанные с нелинейными и диссипативными свойствами системы и возникающие при конечных амплитудах колебаний в ней. В таком случае воздействующую силу можно объединить с этими малыми силами и свести рассмотрение задачи к приближенному исследованию уравнения типа

,

которое отличается от рассмотренного ранее (см. (3.8)) тем, что функция f1 зависит не только от переменной x и её производной, но и явно от времени.

Вводя в исходное уравнение новый масштаб времени t = w1t, получим

.

Вводя обозначение и требуя, чтобы расстройка x была величиной порядка малости m, запишем

.

В правой части этого уравнения малые параметры; обозначив , запишем окончательно

.

(4.20)

Тогда можно решить это уравнение в соответствии с методом ММА.

В качестве простейшего примера рассмотрим вынужденные колебания в контуре с нелинейным затуханием R(i) = R0(1 + g0i2) (см. рис. 26). Для подобного контура мы можем записать уравнение Кирхгофа в виде

.

Если считать, что собственная частота контура w0 близка к частоте внешней силы w1, то, вводя обозначения

, , , , ,

приходим к уравнению

,

(4.21)

где

, .

Для применимости метода ММА к решению этого уравнения необходимо потребовать, чтобы выполнялись неравенства: расстройка x << 1, затухание в системе 2h << 1, амплитуда внешнего воздействия P << 1, т. е. чтобы все члены в правой части уравнения были малы по сравнению с членами в левой его части.

Наташа

Автор

Наташа — контент-маркетолог и блогер, но все это не мешает ей оставаться адекватным человеком. Верит во все цвета радуги и не верит в теорию всемирного заговора. Увлекается «нефрохиромантией» и тайно мечтает воссоздать дома Александрийскую библиотеку.

Другие статьи


Похожая информация


Распродажа дипломных

Скидка 30% по промокоду Diplom2020