Принцип действия генератора постоянного тока
Обмотка статора двигателя включается в трехфазную сеть, и пуск его производится так же, как и пуск асинхронных двигателей с короткозамкнутым ротором.
После того как двигатель разовьет скорость, близкую к синхронной (примерно 95%), обмотка возбуждения включается в сеть постоянного тока и двигатель входит в синхронизм, т. е. скорость ротора увеличивается до синхронной.
При пуске в ход двигателя обмотка возбуждения замыкается на сопротивление, примерно в 10—12 раз большее сопротивления самой обмотки. Нельзя обмотку возбуждения при пуске в ход оставить разомкнутой или замкнуть накоротко. Если при пуске в ход обмотка возбуждения окажется разомкнутой, то в ней будет индуктироваться очень большая э. д. с, опасная как для изоляции обмотки, так и для обслуживающего персонала. Создание э. д. с. большой величины объясняется тем, что при пуске в ход поле статора вращается с большой скоростью относительно неподвижного ротора и с большой скоростью пересекает проводники обмотки возбуждения, имеющей большое число витков.
Если обмотку возбуждения замкнуть накоротко при пуске в ход, то двигатель при пуске под нагрузкой может развить скорость, близкую к половине синхронной, и войти в синхронизм не сможет.
Работа синхронной машины с потреблением из сети опережающего тока дает возможность использовать ее в качестве компенсатора. Как выше было отмечено, синхронный двигатель для сети может являться конденсатором и повышать соs всей энергоустановки, компенсируя реактивную мощность других приемников энергии.
Повышение соs снижает потребление реактивной мощности электроустановок предприятия и уменьшает стоимость электроэнергии.
Компенсатором является синхронный двигатель, работающий без нагрузки и предназначенный для повышения соs предприятия. Таким образом, компенсатор является генератором реактивной мощности.
Конструктивно компенсатор отличается от синхронного двигателя незначительно. Компенсатор не несет механической нагрузки, поэтому его вал и ротор легче, а воздушный зазор меньше, чем у двигателя.
Основным недостатком синхронных двигателей является потребность в источнике как переменного, так и постоянного тока.
Потребность в источнике постоянного тока для питания обмотки возбуждения синхронного двигателя делает его крайне неэкономичным при небольших мощностях. Поэтому при малых мощностях синхронные двигатели с возбуждением постоянным током не находят применения.
При малых мощностях в случае необходимости получения постоянства скорости вращения (в устройствах автоматики, телемеханики, звукового кино и т. и.) широко используют реактивные синхронные двигатели.
Ротор реактивного синхронного двигателя имеет явно выраженные полюса. При очень малых мощностях ротор делают цилиндрическим из алюминия, в который при отливке закладываются стержни из мягкой стали, выполняющие функцию явно выраженных полюсов (рис. 132). Цилиндрическая форма ротора упрощает его обработку и балансировку, а также снижает потери на трение о воздух при работе машины, что существенно для двигателей очень малых мощностей.
В реактивных синхронных двигателях вращающий момент создается в результате стремления ротора ориентироваться в магнитном поле таким образом, чтобы магнитное сопротивление для этого поля было наименьшим. Поэтому ротор будет всегда занимать такое положение в пространстве, при котором магнитные линии вращающегося магнитного поля статора замкнутся через сталь ротора, так что он будет вращаться вместе с магнитным полем статора.
Наряду с трехфазным широко используют и однофазные реактивные двигатели.
Контрольные вопросы
1. Поясните принцип работы синхронного генератора.
2. Каково устройство генератора с явно и неявно выраженными полюсами?
3. Объясните внешние и регулировочные характеристики синхронного генератора.
4. Какие условия необходимо выполнить для включения синхронного генератора в сеть?
5. Объясните принцип работы синхронного двигателя.
6. В чем состоит принцип работы реактивного двигателя?
ГЛАВА X МАШИНЫ ПОСТОЯННОГО ТОКА
§ 104. ПРИНЦИП ДЕЙСТВИЯ ГЕНЕРАТОРА ПОСТОЯННОГО ТОКА
Простейшим генератором является виток, вращающийся в магнитном поле полюсов N и S (см. рис. 125). В таком витке индуктируется переменная во времени э. д. с. Поэтому при соединении концов витка с контактными кольцами, вращающимися вместе с витком, в нагрузке через неподвижные щетки протекает переменный ток, т. е. такая машина является генератором переменного тока.
Для преобразования переменного тока в в постоянный применяют коллектор, принцип действия которого состоит в следующем. Концы витка 1 (рис. 133) присоединяются к двум медным полукольцам (сегментам), называемым коллекторными пластинами. Пластины жестко укрепляют на валу машины и изолируют как друг от друга, так и отвала. На пластинах помещают неподвижные щетки 2 и 3, электрически соединенные с приемником энергии.
При вращении витка коллекторные пластины также вращаются вместе с валом машины и каждая из неподвижных щеток 2 и 3 соприкасается то с одной, то с другой пластиной. Щетки на коллекторе устанавливают так, чтобы они переходили с
одной пластины на другую в тот момент, когда э. д. с, индуктируемая в витке, была равна нулю. В этом случае при вращении якоря в витке индуктируется переменная э. д. с, изменяющаяся синусоидально при равномерном распределении магнитного поля, но каждая из щеток соприкасается с той коллекторной пластиной и соответственно с тем из проводников, который в данный момент находится под полюсом определенной полярности.
Следовательно, э. д. с. на щетках 2 и 3 знака не меняет, и ток по внешнему участку замкнутой электрической цепи протекает в одном направлении от щетки 2 через сопротивление r к щетке 3
Однако несмотря на то, что направление э. д. с. во внешней цепи остается неизменным, величина ее меняется во времени, т. е. получена не постоянная, а пульсирующая э. д. с. Ток во внешней цепи будет также пульсирующим.
Если поместить на якоре два витка под углом 90° один к другому и концы этих витков соединить с четырьмя коллекторными пластинами, то пульсация э. д. с. и тока во внешней цепи значительно уменьшится. При увеличении числа коллекторных пластин пульсация быстро уменьшается и при 16 пластинах на пару полюсов становится менее 1%. Таким образом, при большом числе коллекторных пластин э. д. с. и ток практически постоянны.
§ 105. УСТРОЙСТВО ГЕНЕРАТОРА ПОСТОЯННОГО ТОКА
Неподвижная часть в машинах постоянного тока является индуктирующей, т. е. создающей магнитное поле, а вращающаяся часть является индуктируемой (якорем).
Неподвижная часть машины (рис. 134, а) состоит из главных полюсов 1, дополнительных полюсов 2 и станины 3. Главный полюс (рис. 134, б) представляет собой электромагнит, создающий магнитный поток. Он состоит из сердечника 4, обмотки возбуждения 7 и полюсного наконечника 8. Полюсы крепятся на станине 6 с помощью болта 5. Сердечник полюса отливается из стали и имеет поперечное сечение овальной формы. На сердечнике полюса помечена катушка обмотки возбуждения, намотанная из изолированного медного провода. Катушки всех полюсов соединяются последовательно, образуя обмотку возбуждения. Ток, протекающий по обмотке возбуждения, создает магнитный поток. Полюсный наконечник удерживает обмотку возбуждения на полюсе и обеспечивает равномерное распределение магнитного поля под полюсом. Полюсному наконечнику придают такую форму, при которой воздушный зазор между полюсами и якорем одинаков по всей длине полюсной дуги. Добавочные полюсы имеют также сердечник и обмотку.
Добавочные полюсы устанавливают в средних точках меж главными полюсами, и число их может быть либо равным число главных полюсов, либо вдвое меньшим. Добавочные полюсы устанавливают в машинах больших мощностей, и они служат для уст ранения искрения под щетками. В машинах малых мощности добавочных полюсов обычно нет.
Станина отливается из стали и является остовом машины, На станине крепят главные и добавочные полюсы, а также на торцовых сторонах боковые щиты с подшипниками, удерживающими вал машины. С помощью станины машина крепится на фундаменте.