ВУЗы по физике Готовые работы по физике Как писать работы по физике Примеры решения задач по физике Решить задачу по физике онлайн

Явление поляризации света


5.  Что такое кольца равного наклона?

6.  Чем отличаются кольца равного наклона в отраженном свете от колец в проходящем свете?

7.  Для чего на одну из поверхностей пластины нанесено отражающее покрытие?

8.  В чем заключается интерференционный метод определения показателя преломления?

9.  Что представляет собой и как определяется величина L, используемая при расчетах показателя преломления?

ЛАБОРАТОРНАЯ РАБОТА 7

Поляризация света

ЯВЛЕНИЕ ПОЛЯРИЗАЦИИ СВЕТА.

ЕСТЕСТВЕННЫЙ И ПОЛЯРИЗОВАННЫЙ СВЕТ

Известно, что видимый свет представляет собой электромагнитные волны с определенной длиной волны. При распространении электромагнитной волны в ней совершают колебания вектор напряженности электрического поля и вектор индукции магнитного поля . Эти векторы всегда перпендикулярны друг другу и лежат в плоскости, перпендикулярной распространения волны.

Излучение макроскопического источника света (Солнца, электрической лампы и т. д.) является суммой излучений огромного числа атомов и его свет

 

называют естественным. У естественного луча света колебания в плоскости, перпендикулярной к лучу, происходят по всем направлениям (рис. 1).

Если колебания вектора происходят в одной плоскости (рис.2), то свет называют плоскополяризованным (или линейно поляризованным).

Векторная диаграмма распространения поляризованной волны изображена на рис.3. Видно, что колебания вектора происходят в одной плоскости, проходящей через луч, а сама плоскость называется плоскостью поляризации.

Для выделения из неполяризованного света части, обладающей желаемой поляризацией, используют так называемые поляризаторы. В их роли может выступать кристалл исландского шпата или турмалина, а также искусственный поляризатор.

 

Рис.3 — Диаграмма распространения поляризованной волны

явление двойного лучепреломления

Естественный свет, попадая на оптически анизотропные среды, распадается на две полностью поляризованные волны с взаимно перпендикулярными плоскостями колебаний. При этом

Рис.4 — Явление двойного лучепреломления

одна из них, называется обыкновенной волной (о), распространяется в кристалле во всех направлениях с одинаковой скоростью и, следовательно, характеризуется постоянным значением показателя преломления no. Вторая световая волна, называемая необыкновенной (е), распространяется с различными скоростями в зависимости от угла, образуемого лучом и кристаллографическими осями кристалла. В связи с этим она характеризуется различными показателями преломления по различным направлениям. Значения показателя преломления необыкновенной волны, максимально отличающееся от no, обозначается через ne.

Световые волны о и е полностью поляризованы. При этом колебания вектора в необыкновенной волне совершаются в плоскости «главного сечения кристалла», т. е. в плоскости, проходящей через направление распространения света и направление оптической оси, а колебания обыкновенной волны к ним перпендикулярны. Оптическая ось кристалла это такое направление в нем, в котором скорость распространения обыкновенной и необыкновенной волны одинакова. Естественный луч, проходящий вдоль оптической оси, не претерпевает раздвоения и не поляризуется.

Двойное лучепреломление обусловлено тем, что распределение электронов вокруг ядер в молекуле анизотропного вещества не обладает сферической симметрией. Поэтому и сами молекулы обладают анизотропностью по отношению к электромагнитным волнам.

Поляризаторы

Для работы поляризационных приборов чаще всего применяют призмы и поляроиды, используя которые, благодаря явлению двойного лучепреломления, получают поляризованный свет.

Поляризатором служит, например, призма Николя (рис.5), которая представляет собой две призмы из исландского шпата, склеенные канадским бальзамом.

Показатель преломления исландского шпата больше показателя преломления канадского бальзама. Поэтому, обыкновенный луч, подающий на границу раздела с канадским бальзамом под большим углом, чем необыкновенный испытывает в николе полное внутреннее отражение и поглощается зачерненной поверхностью призмы, а необыкновенный луч выходит полностью поляризованным.

Существуют двоякопреломляющие кристаллы, в которых один из поляризованных лучей поглощается значительно сильнее, чем другой (явление «дихроизма»). В некоторых кристаллах, например, у турмалина, дихроизм выражен сильно, и при толщине пластинки в 1 мм, обыкновенный луч поглощается практически полностью, а вышедший необыкновенный луч становится полностью поляризованным.

Дихроичные кристаллы используются для изготовления поляроидов. Примером поляроида служит тонкая пленка из целлулоида, в которую вкраплены кристаллики герапатита – двоякопреломляющего вещества с сильно выраженным дихроизмом в области видимого света. При толщине 0,1 мм эта пленка полностью поглощает обыкновенные лучи видимой области света.

Преимущество поляроидов перед призмами в возможности изготовлять их с площадями до нескольких квадратных метров.

Чтобы убедится в поляризации света, вышедшего из поляризатора, поставим на его пути другой поляризатор, называемый в этом случае анализатором. Будем поворачивать его вокруг оси, совпадающей с направлением луча. Если плоскости поляризации поляризатора и анализатора параллельны, то поляризованный свет пройдет через анализатор, не меняя своей интенсивности (не рассматривая обычное поглощение света). Если же их плоскости колебаний перпендикулярны друг другу (поляризаторы скрещены), то анализатор полностью погасит падающий свет.

ЗАКОН МАЛЮСА

 

Рассмотрим случай, когда плоскости поляризации кристаллов образуют угол α (рис.6). Введем обозначение АА — след плоскости поляризации анализатора, РР — след плоскости поляризации поляризатора. Это значит, что свет от поляризатора характеризуется одной плоскостью колебаний вектора (Е1Е1), где α0 есть амплитуда колебаний электрического вектора светового луча, идущего от поляризатора, и ее можно разложить на две составляющие α’ и α.

Анализатор пропустит только свет с амплитудой электрического вектора α=α0cosα;. Из теории колебаний известно, что поток энергии волнового процесса (или интенсивность света I) пропорционален квадрату амплитуды колебаний. Поэтому можно записать закон, установленный французским физиком Малюсом, что интенсивность света I прошедшего через поляроид равна

I = I0 cos2α ,

где I0 — интенсивность линейно поляризованного света, падающего на поляроид, а α — угол между направлением вектора и осью пропускания поляроида.

Анализ поляризованного света

Пусть на кристаллическую пластинку К (толщины d), вы­резанную параллельно оптической оси, после поляроида N нормально падает плоскополяризованный свет (рис.7). Внутри пластинки он раз­бивается на обыкновенный (о) и необык­новенный (е) лучи, которые в кристалле пространственно не разделены (но дви­жутся с разными скоростями), а на вы­ходе из кристалла складываются. X

Наташа

Автор

Наташа — контент-маркетолог и блогер, но все это не мешает ей оставаться адекватным человеком. Верит во все цвета радуги и не верит в теорию всемирного заговора. Увлекается «нефрохиромантией» и тайно мечтает воссоздать дома Александрийскую библиотеку.

Другие статьи


Распродажа дипломных

Скидка 30% по промокоду Diplom2020

А ты боишься COVID-19?

Пройди опрос и получи промокод