ВУЗы по физике Готовые работы по физике Как писать работы по физике Примеры решения задач по физике Решить задачу по физике онлайн

Дифференциальные соотношения взаимности термодинамики


ℒ (4)

Функции состояния ТС: внутренняя энергия U, энтальпия Н и свободные энергии Гельмгольца F и Гиббса G называются характеристическими функциями при определенном выборе независимых переменных.

7.2. Характеристические функции и дифференциальные соотношения взаимности термодинамики

Характеристической функцией называется функция состояния ТС, позволяющая при соответствующем выборе независимых переменных (при определенных условиях сопряжения ТС с окружающей средой) выражать через свои производные наиболее просто и в явном виде термодинамические параметры, характеризующие свойства термодинамической системы. Построение термодинамического анализа на этих свойствах характеристических функций составляет основу метода характеристических функций.

Рассмотрим простую (=0), закрытую () термодинамическую систему. Тогда для обратимых процессов объединенные выражения 1-го и 2-го законов термодинамики будут иметь вид:

, (5)

(6)

(7)

. (8)

Каждое из уравнений (5)-(8) связывает пять переменных величин, которые зависят лишь от состояния ТС и не зависят от пути процесса. Функции U, H, F, G являются характеристическими только при определенном выборе независимых переменных: . Полные дифференциалы функций U, H, F, G имеют вид:

(9)

(10)

, (11)

. (12)

Линейным дифференциальным соотношениям (9)-(12) тождественны объединенные выражения 1-го и 2-го законов термодинамики (5)-(8). Сопоставляя уравнения (5) и (9) можно наиболее просто выразить неизвестные параметры – температуру Т и давление р с помощью частных производных внутренней энергии по энтропии S и по объему V:

, . (13)

По аналогии выразим неизвестные параметры в выражениях (6)-(8) с помощью частных производных (10)-(12) для функций H, F и G:

, , (14)

, , (15)

, . (16)

Согласно свойству полного дифференциала вторая смешанная производная от функции U не зависит от порядка дифференцирования, т. е.:

, или (17)

.

По аналогии для функций H, F, G получим:

, для Н, (18)

, для F, (19)

, для G. (20)

Уравнения (17)-(20) называются дифференциальными соотношениями взаимности или уравнениями Максвелла. Они в такой же степени достоверны, как и законы термодинамики, следствием которых они являются. Уравнения (17)-(20) широко используются при термодинамическом анализе. При анализе также широко используется уравнение связи, которое выводится следующим образом. Если функция — функция состояния, то ее полный дифференциал равен:

.

Для =const . Тогда получим:

.

После деления на имеем:

. (21)

Связи частных производных одного термодинамического параметра по другому (21) справедливы при определенных условиях сопряжения ТС с окружающей средой.

Схема чередования термодинамических параметров в уравнении связи (21) имеет вид:

т. е. функция → аргумент → фиксированный параметр: (), (), ().

7.3. Максимальная и минимальная работы процесса. Термодинамические потенциалы

По изменению характеристических функций можно определить максимальную работу немеханического характера при соответствующих условиях сопряжения ТС с окружающей средой, т. е. при двух фиксированных независимых параметрах. Так, для сложной закрытой ТС, в которой протекают процессы с двумя фиксированными параметрами, находящимися под знаками дифференцирования в правых частях объединенных выражений 1-го и 2-го законов термодинамики (1)-(4) получим следующие соотношения:

при S, V=const s, V , (22)

при S, p=const s, p , (23)

при T, V=const T, V, (24)

Наташа

Автор

Наташа — контент-маркетолог и блогер, но все это не мешает ей оставаться адекватным человеком. Верит во все цвета радуги и не верит в теорию всемирного заговора. Увлекается «нефрохиромантией» и тайно мечтает воссоздать дома Александрийскую библиотеку.

Другие статьи


Распродажа дипломных

Скидка 30% по промокоду Diplom2020

А ты боишься COVID-19?

Пройди опрос и получи промокод