Фотоэлементы и фотореле
Из эквивалентной схемы видно, что ток коллектора транзистора типа р-n-р одновременно является током базы, отпирающим транзистор n-р-n, а коллекторный ток последнего — базовым током, отпирающим транзистор типа р-n — р.
При увеличении прямого напряжения батареи с, подаваемого на тиристор, небольшое приращение тока в цепи эмиттера транзистора типа р-n-р ΔIэ1 вызовет приращение тока в цепи коллектора этого же транзистора ΔIк1, что, в свою очередь, приводит к увеличению коллекторного тока сопряженного транзистора ΔIк2 , а также коллекторного транзистора типа р-n-р ΔIк1. Далее процесс продолжается, и ток эквивалентных транзисторов возрастает.
Наличие третьего вывода УЭ тиристоров значительно облегчает управляемость прибора. Увеличение тока в цепи тиристора может быть достигнуто независимо от величины приложенного напряжения путем введения дополнительного тока через управляющий электрод в одну из базовых областей структуры. Ток в цепи управляющего электрода, складываясь с общим током прибора, вызовет увеличение коэффициента усиления по току транзистора р-n-р типа, в результате чего начнется лавинное нарастание тока в цепи.
После отпирания тиристора за счет тока в цепи управляющего электрода управляющее действие его прекращается. Запирание тиристора может быть осуществлено путем изменения полярности напряжения на аноде или уменьшения тока, протекающего через прибор до значения, называемого током «удержания».
Из сказанного следует, что работа управляемого полупроводникового прибора подобна работе тиратрона, в котором управление включением анодной цепи выполняется подачей напряжения зажигания на сетку лампы.
По сравнению с тиратроном тиристоры имеют меньший вес и габариты, обладают большой механической прочностью и значительно большим коэффициентом полезного действия. Тиристор может работать при более низких напряжениях питания.
Тиристоры обладают рядом преимуществ и перед мощными, транзисторами. Они могут работать при очень больших токах и более высоких обратных напряжениях.
Существенным недостатком тиристоров является то, что они не могут быть выключены с помощью управляющего сигнала.
В настоящее время тиристоры применяют в основном в устройствах электропитания в качестве выпрямителей, преобразователей энергии, частотных преобразователей, в устройствах защиты электронной аппаратуры.
§ 157. ФОТОЭЛЕМЕНТЫ И ФОТОРЕЛЕ
Фотоэлементом называется прибор, в котором воздействие лучистой энергии оптического диапазона вызывает изменение его электрических свойств.
Фотоэлементы разделяются на три типа: 1) с внешним фотоэффектом, 2) с внутренним фотоэффектом, 3) с запирающим слоем.
В фотоэлементе с внешним фотоэффектом действие света вызывает выход из поверхностного слоя фотокатода электронов во внешнее пространство — в вакуум или сильно разреженный газ.
Схема устройства такого фотоэлемента приведена на рис. 222, а. На внутреннюю стенку стеклянной колбы 1, из которой откачан воздух, с одной стороны нанесен фотокатод 2. Широкое применение получили сурьмяно-цезиевые фотокатоды. В центре колбы вакуумного фотоэлемента укреплен металлический анод 3 в виде небольшого кольца или пластинки. Колба снабжена пластмассовым цоколем 4. В нижней части цоколя находятся контактные штырьки 5, к которым подводятся соединительные провода от фотокатода и анода. При помощи этих штырьков фотоэлемент вставляется в фотоэлементную панель.
Для работы фотоэлемента к его аноду и катоду подключают источник электрической энергии — батарею.
Анод соединяется с положительным зажимом, а фотокатод — с отрицательным зажимом источника электрической энергии.
Под действием подведенного к электродам фотоэлемента напряжения внутри него образуется электрическое поле, и электроны, вылетающие с поверхности освещенного фотокатода, направляются на положительно заряженный анод. Эти электроны создают в цепи
отношением величины фототока (в мка или зла), получаемого в цепи, на единицу светового потока (люмен), падающего на фотокатод.
Для увеличения чувствительности фотоэлементов внутрь колбы иногда вводят небольшое количество газа, чаще всего аргона. Такие фотоэлементы называются газонаполненными. Величина чувствительности фотоэлемента различных типов колеблется от 20 до 150 мка/лм.
Для практического использования фотоэлементов важное значение имеет его вольт-амперная характеристика (рис. 222, б). Она выражает зависимость фототока от величины приложенного напряжения к зажимам фотоэлемента при неизменной величине светового потока, освещающего фотокатод.
Внутреннее сопротивление вакуумных фотоэлементов исчисляется сотнями мегом, а газонаполненных — несколькими десятками мегом. Схема устройства фотоэлементов с внутренним фотоэффектом, носящих название фотосопротивлений (ФС) или фоторезисторов, приведена на рис. 223, а.
Фотосопротивление представляет собой стеклянную пластинку, покрытую тонким слоем полупроводникового материала (сернистого свинца, сернистого висмута, сернистого кадмия), на котором расположены токопроводящие электроды.
Сущность внутреннего фотоэффекта сводится к следующему. Известно, что электропроводимость связана с количеством носителей заряда, который имеет тот или иной материал. В полупроводниках количество носителей электрических зарядов может увеличиваться вследствие поглощения энергии извне, в частности под воздействием световой энергии.
Увеличение количества носителей электрических зарядов в материале повышает, его способность проводить электрический ток.
В результате этого уменьшается электрическое сопротивление освещаемого материала.
Отличительная особенность фотосопротивлений от фотоэлементов с внешним фотоэффектом заключается в том, что при внешнем фотоэффекте электроны покидают пределы освещенного материала, а при внутреннем фотоэффекте они остаются внутри материала, увеличивая тем самым количество носителей электрических зарядов.
Изменение проводимости в полупроводниках под воздействием света может быть очень большим. В некоторых материалах при переходе от темноты к интенсивному освещению сопротивление уменьшается в десятки раз и соответственно изменяется величина тока в цепи фотосопротивлений (рис. 223, б).
Величина изменения сопротивления, вызванная воздействием светового потока на фотосопротивление,
где Δr — изменение сопротивления ФС, ом,
rт. — сопротивление ФС в темноте, ом,
rc — сопротивление ФС при его освещении, ом.
Число, показывающее, во сколько раз rт больше rc, называется кратностью изменения сопротивления ФС.
Оно может иметь значение от 1,0 до 500. Чувствительность их оценивается в мка при напряжении 1 в и составляет 500— 3000 мка/лм-в, следовательно, превышает чувствительность фотоэлементов с внешним фотоэффектом. Поэтому в ряде устройств в настоящее время фотосопротивлениями заменены фотоэлементы с внешним фотоэффектом.
Недостатком фотосопротивлений является то, что при их освещении фототок не сразу достигает своего конечного значения, а лишь через некоторое время (инерционность фотоэлемента), то же относится к нелинейной зависимости фототока от силы света, т. е. фототок возрастает медленнее, чем сила света, освещающая фотоэлемент. Кроме того, фототок зависит от температуры среды (1—3% на 10°С). Последнее обстоятельство затрудняет применение фотосопротивлений при больших изменениях температуры внешней среды.
Устройство одного из фотоэлементов с фотоэффектом в запирающем слое, носящих название вентильных фотоэлементов, показано на рис. 224. На стальное основание
нанесен слой селена, на котором помещается тончайшая (тысячные доли микрона) полупрозрачная пленка из золота. Между полупроводником и металлом при обработке фотоэлемента образуется электронно-дырочный р — n-переход.
Корпус фотоэлемента, изготовленный из изоляционного материала, имеет два зажима.