ВУЗы по физике Готовые работы по физике Как писать работы по физике Примеры решения задач по физике Решить задачу по физике онлайн

Механические потери


Рис.9.3.

Рис.9.4.

Часть подведенной мощности теряется (превращается в тепло). Потери мощности в насосе делят на механические, объемные и гидравлические.

Механические потери. Механическими потерями являются потери на трение в подшипниках, в уплотнениях вала и на трение элементов насоса о жидкость.

Мощность Nг, остающаяся за вычетом механических потерь, передается рабочими органами насоса жидкости. Ее принято называть гидравлической.

Величина механических потерь оценивается механическим КПД, который равен отношению оставшейся после преодоления механических сопротивлений гидравлической мощности Nг к мощности N, подведенной к насосу:

.

численное значение ηмех = 0,70…0,98.

Объемные потери. Жидкость, выходящая из рабочих элементов насоса, например, из рабочего колеса насоса, в основном поступает в напорный патрубок насоса, но частично возвращается снова на вход насоса через зазоры. Энергия этой возвращающейся жидкости теряется. Эти потери называются объемными. Утечки обусловлены тем, что давление на выходе больше, чем на входе. Кроме того имеются утечки через уплотнение вала. Они обычно малы, и ими можно пренебречь.

Объемные потери оценивают объемным КПД, равным отношению мощности , оставшейся за вычетом мощности, затрачиваемой на объемные потери, к гидравлической мощности Nг:

,

где Nо – мощность, затрачиваемая на объемные потери.

Так как каждая единица веса жидкости, протекающей через зазоры и уплотнения, уносит Нт энергии, то объемный к. п.д. можно выразить как ,

где QТ – теоретическая подача; ΔQ – утечки.

численное значение = 0,90…0,98.

Меньшее значение к. п.д. характерно для динамических насосов, большее – для объемных.

Гидравлические потери. Третьим видом потерь энергии в насосе являются потери на преодоление гидравлического сопротивления подвода, рабочих элементов насоса, например, рабочего колеса лопастных насосов и отвода, или гидравлические потери. Они оцениваются гидравлическим к. п.д. ηг, который равен отношению полезной мощности насоса Nп к мощности N`:

или ,

где hп – гидравлические потери; численное значение

Тогда полный к. п.д. насоса ; η = 0,35…0,96. меньшее значение характерно для насосов трения, большее – для крупных насосов.

Мощность насоса, т. е. мощность, которую необходимо подвести к насосу, определяют из выражения

или

размерность величин: ρ, кг/м3; g, м/с2; Q, м3/с; Н, м.

Двигатель к насосу должен быть выбран с некоторым запасом мощности К:

Nдв = К N.

Численное значение коэффициента запаса мощности от мощности насоса N:

N, кВт

<1

1-2

2-5

5-50

>50

К

2

1,5

1,2

1,15

1,1

9.3. Область применения насосов

С целью того, чтобы сузить поиск необходимого насоса для той или иной цели рассмотрим область применения различных групп насосов согласно классификации, в зависимости от их основных параметров: подачи Q и напора Н.

Если говорить о возможной подаче, то по мере ее увеличения насосы располагаются в следующем порядке (рис.9.5): объемные, центробежные и осевые. Если же в качестве определяющего параметра рассматривать максимально возможное значение напора, то порядок будет обратным. Что касается насосов трения, то все они в поле Н — Q занимают области, прилегающие к осям координат и характеризуемые малыми значениями либо напора, либо подачи. Таким образом, практически весь диапазон напоров от 1 до 10000 м и подача от нескольких литров до 150000 м3/ч перекрывается большим числом типоразмеров хорошо освоенных промышленностью насосов.

В то же время при решении вопроса об использовании какого-либо насоса в той или иной технологической установке решающее значение помимо рабочих параметров приобретают его эксплуатационные качества.

Рис. 9.5

10. динамические насосы

Из этой группы насосов более подробно изучаются центробежные насосы, входящие по классификации в подгруппу лопастных насосов, поэтому определению «центробежный насос» должны предшествовать определения «Динамический насос» и «Лопастной насос» согласно ГОСТ 17398-72.

10.1. центробежные насосы

10.1.1. Схема устройства и принцип действия

Динамический насос – это насос, в котором жидкая среда перемещается под силовым воздействием на нее в камере, постоянно сообщающейся с входом и выходом насоса.

Лопастной насос – это динамический насос, в котором жидкая среда перемещается путем обтекания лопасти.

Центробежный насос – это лопастной насос, в котором жидкая среда перемещается через рабочее колесо от центра к периферии.

На основании приведенных определений составим в простейшем виде схематически конструкцию этого насоса (рис.10.1) консольного типа.

На вал 1 насажено рабочее колесо 2, вращающееся внутри корпуса 3. Рабочее колесо состоит из двух дисков (переднего и заднего), соединенных в единую конструкцию лопастями 4. Лопасти отогнуты плавно в сторону, противоположную направлению вращения колеса. Передний диск имеет отверстие для подвода жидкости, задний – втулку для крепления колеса на валу. Поток входит в насос в осевом направлении, выходит — в радиальном. На входе в корпус крепится всасывающий патрубок, на выходе – нагнетательный.

Рис.10.1

Рабочее колесо с корпусом образуют спиральную камеру 5, которая затем плавно переходит в короткий диффузор, образующий напорный патрубок, соединяемый с напорным трубопроводом. Между валом и корпусом предусмотрено уплотнение 6.

Рассмотрим принцип действия центробежного насоса (рис.10.1). Так как вход и выход этого насоса между собой постоянно сообщаются, то насос принципиально не способен создать достаточное разрежение для его заполнения жидкостью, поэтому перед пуском насоса в работу последней должен быть заполнен перекачиваемой жидкостью. Для возможности заполнения во всасывающей трубе для малых насосов предусматривается обратный клапан 7, а для более крупных, в которых клапаны отсутствуют, – вакуумирование.

При вращении рабочего колеса на каждый объем жидкости, находящейся в межлопастном канале, действует центробежная сила, под действием которой жидкость выбрасывается из рабочего колеса в спиральную камеру; так как жидкость является сплошной средой без пустот и переуплотнений, то начиная с центра рабочего колеса, жидкость перемещается непрерывными потоками в межлопаточных пространствах, наращивая в основном кинетическую энергию, которая сначала в спиральной камере, затем в диффузоре превращается в потенциальную энергию, т. е. растет давление.

10.1.2. Основное уравнение центробежного насоса

Несмотря на простоту конструкции центробежного насоса, движение жидкости внутри него, особенно в межлопастном пространстве, довольно сложное. Для объяснения движения жидкости в рабочем колесе насоса существуют две теории. Первая – вихревая (теория Н. Е. Жуковского). Суть ее заключается в том, что лопасть рабочего колеса, при обтекании которого возникает подъемная сила, заставляющая перемещать жидкость внутри колеса (рис.10.2)

Рис.10.2

Вихревая теория более приемлема для объяснения работы осевых насосов и менее удобна для центробежных.

Наташа

Автор

Наташа — контент-маркетолог и блогер, но все это не мешает ей оставаться адекватным человеком. Верит во все цвета радуги и не верит в теорию всемирного заговора. Увлекается «нефрохиромантией» и тайно мечтает воссоздать дома Александрийскую библиотеку.

Другие статьи


Похожая информация


Распродажа дипломных

Скидка 30% по промокоду Diplom2020