Мощность переменного тока
(1.18)
Энергия в катушке индуктивности не расходуется. В первую четверть периода она запасается в ее магнитном поле, а во вторую — отдается источнику тока. Произведение напряжения UL на величину силы тока I в цепи называется реактивной мощностью.
В рассмотренной цепи активная мощность равна нулю, так как энергия в ней не расходуется, сдвиг по фазе между векторами тока I и напряжением U равен 90 ° и cos φ = 0.
Переменный ток в цепи с последовательными активным и индуктивным сопротивлениями. Теперь рассмотрим цепь с реальной катушкой, которую можно представить как цепь с последовательно включенными индуктивностью L и активным сопротивлением R (рис. 1.7). Если в цепи с последовательными активным и индуктивным сопротивлениями протекает переменный синусоидальный ток, то напряжение на индуктивности, как было установлено ранее, опережает ток на 90°, а напряжение на активном сопротивлении совпадает с ним по фазе.
Так как напряжения UL, UR по фазе не совпадают, то напряжение, приложенное ко всей цепи, равно их геометрической сумме. Сложив векторы UL и UR, находим величину вектора U, который сдвинут по фазе относительно вектора тока I на угол φ < 90°, опережая его. Таким образом, в цепи переменного тока с последовательно соединенным активным сопротивлением и катушкой индуктивности ток отстает по фазе от напряжения.
Построив векторную диаграмму, рассмотрим треугольник со сторонами UL, UR, U. Этот треугольник называется треугольником напряжений. Так как он прямоугольный, то
(1.19)
Из треугольника напряжений можно получить подобный ему треугольник сопротивлений со сторонами R, XL и Z Из этого треугольника полное сопротивление цепи равно:
(1.20)
Так как сдвиг по фазе между током и напряжением меньше 90°, то энергия в такой цепи расходуется лишь на активном сопротивлении R.
Активная мощность при этом равна:
(1.21)
Цепь переменного тока с емкостью. Если к источнику переменного тока подключить конденсатор, то в цепи появится ток. Способность конденсатора пропускать переменный ток объясняется тем, что под действием переменного синусоидального напряжения конденсатор периодически заряжается и разряжается, вследствие чего происходит перемещение электрических зарядов в проводниках, соединяющих конденсатор с источником тока. Соотношение фаз тока и напряжения представлено на рис. 1.8. В и, епи с емкостью ток опережает по фазе напряжение на 90°. Закон Ома для цепи переменного тока с емкостью определяет действующее значение силы тока:
(1.22)
Величина называется емкостным сопротивлением. Она обратно пропорциональна частоте тока в цепи и емкости конденсатора. Измеряется в омах (Ом).
1.9. Мощность переменного тока
Для цепей переменного тока различают активную, полную и реактивную мощности.
Активная мощность представляет собой действительную мощность переменного тока, аналогичную мощности, развиваемой постоянным током. Она производит полезную работу; может быть преобразована с помощью электродвигателей в механическую мощность, механическую энергию; измеряется в ваттах (Вт) и определяется по формуле
(1.23)
Полной мощностью называют максимально возможную величину активной мощности, развиваемую переменным током при заданных значениях напряжения и силы тока и при наиболее благоприятных условиях, а именно, когда cos φ = 1. Полная мощность обозначается латинской буквой S и измеряется в вольт-амперах (В-А). Из определения полной мощности следует выражение
(1.24)
Сравнивая между собой формулы (1.23) и (1.24), находим соотношение между активной и полной мощностями:
(1.25)
(1.26)
Полной мощностью (кВ А) принято измерять мощность генераторов переменного тока, машин, производящих электроэнергию, и трансформаторов, аппаратов, предназначенных для преобразования электрической энергии одного напряжения в электрическую энергию другого напряжения. Полная мощность этих машин определяется произведением номинальных (нормальных) величин их напряжения и силы тока (т. е. величин этих параметров, на которые рассчитаны машины). А активная их мощность зависит от коэффициента мощности, при котором они работают (Р= Scosφ). В свою очередь этот коэффициент мощности зависит от соотношения величин активного и реактивного сопротивления, включенных в цепь, иными словами, от характера электроприемников, питаемых данным генератором или трансформатором.
Реактивная мощность. Для рассмотрения реактивной мощности необходимо иметь представление об активной и реактивной составляющих переменного тока. Сравнивая между собой формулы для определения мощности переменного и постоянного тока, можно видеть, что на месте полной величины силы тока I в формуле мощности стоит выражение I cos φ, где cos φ — величина, меньше единицы (и только в отдельных случаях равная ей). Отсюда следует, что в цепях переменного тока не весь ток создает полезную, активную мощность, а только некоторая его часть, которая называется активной составляющей тока.
Проекция вектора тока на горизонтальное направление, перпендикулярное вектору напряжения, равная /sin<p, называется реактивной составляющей переменного тока. Реактивная составляющая тока не участвует в создании активной мощности.
Произведение действующего в цепи напряжения на реактивную составляющую тока носит название реактивной мощности и обозначается латинской буквой Q. Реактивная мощность измеряется в единицах, называемых «вар». Из приведенного определения реактивной мощности вытекает соотношение
(1.27)
где Q — реактивная мощность, вар; U — напряжение, В; I — сила тока, A; sin φ — числовой коэффициент, зависящий от угла сдвига фаз в данной цепи.
Реактивная мощность, так же как и реактивная составляющая тока, характеризует собой ту энергию, которая идет на создание магнитного поля индуктивности или электрического поля конденсатора (если последний включен в данную цепь). Эта энергия в процессе протекания переменного тока в цепях со сдвигом фаз совершает непрерывные колебания между источником энергии и ее потребителем.
Активная, реактивная и полная мощности переменного тока связаны между собой соотношением
(1.28)
Это соотношение можно представить как векторную диаграмму, получаемую на основании диаграммы напряжений или токов, носящую название «треугольника мощностей» (рис. 1.9). Два катета этого треугольника представляют собой в том или ином масштабе активную и реактивную мощности (соответственно в кВт и квар), а гипотенуза — полную мощность (в кВ-А). Угол ср численно равен углу сдвига фаз тока и напряжения в цепи. Значение косинуса этого угла называют коэффициентом мощности.
1.10. Понятие о трехфазном токе и его получении
Трехфазной системой называется совокупность трех однофазных цепей, в которых действуют три ЭДС одинаковой частоты, сдвинутые по фазе одна относительно другой на 120°. Такая система получила наиболее широкое распространение, ибо она позволяет при передаче одной и той же мощности получить экономию металла в проводах, уменьшить потери энергии и создать простые и удобные в эксплуатации трехфазные двигатели переменного тока.
На рис. 1.10 показана система, состоящая из трех отдельных генераторов (рис. 1.10, б), и упрощенная схема генератора трехфазного тока (рис. 1.10, а). Трехфазный генератор имеет три обмотки, в которых индуктируются три ЭДС, сдвинутые по фазе на 120°. Каждая обмотка называется фазой, а напряжение на фазе — фазным напряжением (£/ф). Нагрузка подключается к обмоткам генератора линейными проводами и нулевым проводом, который в некоторых случаях может отсутствовать.
Напряжение между линейными проводами называется линейным напряжением (Un). Ток в фазе генератора или нагрузки называется фазным током, а ток в линейном проводе — линейным током. Обмотки генератора и нагрузка могут включаться в «звезду» или в «треугольник». На рис. 1.11 показано соединение в «звезду»: начало или
концы обмоток генератора соединяют в одну точку. К оставшимся концам обмоток подключают линейные провода, а к общей точке — нулевой провод. Если нагрузка равномерная, то нулевой провод не нужен, ибо он обеспечивает независимость работы фаз при неравномерной нагрузке, когда по нему текут уравнительные токи.
Линейное напряжение при соединении в «звезду» в — Д раз больше фазного, линейные и фазные токи одинаковы:
(1.29)
Чтобы соединить обмотки генератора в «треугольник», необходимо конец первой обмотки соединить с началом второй; конец второй — с началом третьей; конец третьей — с началом первой. Линейные провода подключают к точкам соединения фаз (рис. 1.12).
При соединении в «треугольник» линейные и фазные напряжения равны, а линейный ток в 7з раз больше фазного:
(1.30)
Мощность трехфазной системы складывается из мощностей каждой фазы. Чтобы найти общую мощность, надо по формуле Р=IФUФcosφ определить мощность в каждой фазе и все три мощности сложить. Так поступают при любых нагрузках.
Общая мощность может быть определена по формуле
(1.31)
если нагрузка равномерная, т. е. если сопротивление и характер нагрузки всех трех фаз одинаковы.
1.11. Электроизмерительные приборы
Электроизмерительными приборами называются приборы, служащие для измерения электрических величин. Они классифицируются по следующим признакам:
по роду измеряемой величины: амперметры, вольтметры, омметры, ваттметры и комбинированные;
по роду тока: приборы постоянного тока, переменного тока и комбинированные;
по принципу действия: магнитоэлектрические, электромагнитные, электродинамические, индукционные, термоэлектрические, электростатические, электронные и др.;
по погрешностям измерений: на восемь классов — 0,05; 0,1; 0,2; 0,5; 1; 1,5; 2,5 и 4. Цифры показывают максимальную погрешность в процентах, которая возможна у прибора данного класса. Например, погрешность показаний амперметра класса 1,5 не превышает ±1,5%.
Существует два основных метода электрических измерений: метод непосредственной оценки; метод сравнения.
В методе непосредственной оценки измеряемая величина отсчитывается непосредственно по шкале прибора. Достоинство метода — удобство отсчета показаний прибора и малая затрата времени на операцию измерения. Недостаток — сравнительно невысокая точность измерений.
В методе сравнения измеряемая величина сравнивается непосредственно с эталоном. Метод сравнения используется в лабораторных условиях.
Кроме обычных показывающих приборов, которые указывают то или иное измерение на данный момент времени (обычно стрелкой на шкале прибора) существуют самопишущие измерительные приборы, записывающие непрерывно на движущейся ленте свои показания.
Условные обозначения, определяющие основные характеристики прибора, выносятся на шкалу электроизмерительного прибора (табл. 1.1).
Таблица 1.1
Основные условные обозначения, выносимые на шкалу электроизмерительного прибора
1,5 |
Класс точности 1,5 |
Постоянный ток |
|
Переменный (однофазный) ток |
|
Постоянный и переменный токи |
|
Трехфазный ток |
|
Прибор магнитоэлектрической системы |
|
Прибор электромагнитный системы |
|
Прибор электродинамической системы |
|
Прибор индукционной системы |
|
Прибор устанавливается горизонтально; вертикально; под углом 60“ |
|
Изоляция прибора испытана при напряжении 2 кВ |
|
А |
Для закрытых отапливаемых помещений |
Б |
Для закрытых неотапливаемых помещений |
В |
Для полевых и морских условий |
Пример. На шкале прибора имеются следующие условные обозначения: 2,5; ;;;; Б. Это значит, что погрешность при из мерении — 2,5%; род тока — постоянный и переменный; электромагнитная измерительная система; вертикальная установка; изоляция испытана при напряжении 2 кВ; прибор предназначен для установки в закрытых неотапливаемых помещениях.
ГЛАВА 2. ЭЛЕКТРИЧЕСКИЕ МАШИНЫ
2.1. Общие сведения
Электрические машины, действия которых основаны на электромагнитных явлениях и которые служат для преобразования механической энергии в электрическую, называют электромашинными генераторами, а преобразующие электрическую энергию в механическую — электродвигателями. Применяют также электрические машины для преобразования электрической энергии одних параметров в другие, которые называют преобразователями. Преобразовываться могут: род тока, частота, напряжение, число фаз и другие параметры электроэнергии.
Электрические генераторы приводятся во вращение паровыми и водяными турбинами, двигателями внутреннего сгорания и др. Электродвигатели служат для приведения в действие станков, различных машин, транспортного оборудования и др.
К электрическим машинам относят трансформаторы — статические аппараты, не имеющие движущихся частей, но по своему устройству и принципу действия имеющие много общего с электрическими машинами.
Электрические машины обладают свойством обратимости, т. е. могут работать генератором. Если их вращать каким-либо двигателем или подводить к ним электроэнергию, они могут использоваться как электродвигатели. Однако при проектировании электромашин учитывают требования, предъявляемые особенностями их работы генератором или электродвигателем.
Электрические машины подразделяются на машины переменного и постоянного тока.
Электрические машины переменного тока разделяют на синхронные, асинхронные, коллекторные.
Наибольшее применение имеют синхронные генераторы переменного трехфазного тока и трехфазные асинхронные электродвигатели. Коллекторные электродвигатели переменного тока имеют ограниченное применение вследствие сложности устройства, обслуживания и более высокой стоимости. Основным их преимуществом является возможность регулирования скорости вращения в широких пределах, что затруднительно в асинхронных двигателях.