Общие сведения о трансформаторах
На рис. 93 приведена схема устройства и действия электроконтактного датчика, используемого для измерения размеров деталей. Измерительный шток 1 под действием пружины 2 стремится выдвинуться из корпуса датчика вниз.
Если геометрический размер контролируемой детали 3 больше заданного, измерительный шток поднимается, размыкает контакт 4 и замыкает контакт 5. При нахождении под штоком изделия с размером меньше заданной величины контакт 5 размыкается и замыкается контакт 4. При нормальном размере контролируемой детали контакты 4 и 5 остаются разомкнутыми.
К датчику можно присоединить электроизмерительные приборы. Отклонение стрелки одного прибора соответствует большему размеру детали, а другого — меньшему размеру. Положение стрелок у нулевого деления означает, что под щупом датчика проходят детали заданных размеров.
Вместо электроизмерительных приборов можно подключить к датчику электромагнитные счетчики, при помощи которых учитывается количество деталей брака — большего и меньшего размеров.
Счетчики можно заменить разноцветными сигнальными лампами.
Индукционные датчики преобразуют неэлектрические величины 8 индуктированную э. д. с, которая измеряется электроизмерительным прибором.
В индукционном датчике (рис. 94) катушка 1, помещенная на сердечнике 2, перемещается в зазоре постоянного магнита 3 (или электромагнита) и в ней индуктируется э. д. с.
Для автоматического контроля размеров детали в процессе ее обработки на станке применяют виброконтактный прибор с индукционным датчиком. Он позволяет значительно увеличить производительность станков, облегчает труд рабочих, резко сокращает брак.
Схема устройства виброконтактного прибора приведена на рис. 95. Деталь обрабатывается шлифовальным кругом 7. Размеры обрабатываемой детали контролируются датчиком-щупом 6, выполненным в виде рычага. Щуп прижимается к детали 8 под действием плоской пружины 5. Когда по электромагниту 4 пропускают переменный ток, выступ щупа то притягивается к сердечнику
этого электромагнита, то отходит от него. При этом щуп получает колебательные движения по вертикали (100 раз в секунду).
Верхний конец щупа соединен с намагниченным от постоянного магнита 2 сердечником 3 второго электромагнита, обмотка которого соединена с электроизмерительным прибором — индикатором 1, Шкала индикатора отградуирована в миллиметрах.
При колебаниях щупа магнитное поле сердечника 3 пересекает витки электромагнита и в ней индуктируется э. д. с, под действием которой по обмотке измерительного прибора начинает проходить ток.
Когда щуп подводят к обрабатываемой детали, его рабочая часть ударяет о ее поверхность. По мере обработки детали размах колебаний щупа изменяется, а вместе с этим меняются индуктируемая в электромагните э. д. с. и сила тока в индикаторе. По положению стрелки на шкале индикатора рабочий следит за размером обрабатываемой детали,
Такой прибор может работать автоматически и в момент достижения заданного размера через специальное устройство остановить станок.
Для измерения скорости вращения вала применяют электрические тахометры. Они состоят из индукционного датчика и индикатора. Датчик представляет собой маленький генератор электрической энергии. Напряжение, даваемое этим генератором, изменяется пропорционально скорости вращения его оси К зажимам датчика присоединяется индикатор-вольтметр, шкал; которого отградуирована в единицах скорости.
Чтобы определить скорость вращения вала машины, ось датчике соединяют с валом при помощи зубчатой или иной передачи. В обмотке датчика индуктируется э. д. с, пропорциональная скорости вращения вала. Ее величину показывает стрелка на шкале прибора.
Для измерения температуры используется зависимость величины э. д. с. термопары от температуры нагрева места ее спая.
На рис. 96 показан термоэлектрический измеритель температуры. Он состоит из датчика 1 в виде термопары и индикатора 2 — электроизмерительного прибора, шкала которого отградуирована в градусах температуры. Этим электротермометром можно измерять температуру, например, в пределах от 0 до 100° С.
На рис. 97 показана схема использования пьезоэлектрического датчика для измерения давления.
Через трубку 1 пьезоэлектрического манометра пар, давление которого необходимо измерить, воздействует на мембрану 2 и через шайбу 3 передается на две пластинки 4 пьезоэлектрика из кварца. При сжатии кварца на его концах, соединенных с электродом 6, появляется отрицательный электрический заряд, а на противоположных концах кварцевых пластинок, соединенных с корпусом 5, — положительный заряд.
Электрод 6 и корпус 5 манометра проводниками соединяются с индикатором — электроизмерительным прибором 7, шкала которого отградуирована в единицах измерения давления.
Этот прибор измеряет величину зарядов, возникающих на кварцевых пластинках, а следовательно, и давление.
Пьезоэлектрические манометры пригодны для измерения больших и очень малых давлений. Это связано с тем, что ничтожно малое количество электричества, появляющееся на концах пьезоэлектриков при весьма малых давлениях, можно подать на усилитель, а затем измерить электроизмерительным прибором.
Контрольные вопросы
Какими приборами измеряется сила тока, напряжение и сопротивление? Назовите преимущества приборов электромагнитной системы. На каком принципе основано действие приборов магнитоэлектрической системы? Для чего к амперметру подключают шунт? По какой формуле можно вычислить величину добавочного сопротивления, Присоединяемого к вольтметру? Какими приборами измеряют расход электрической энергии? Для чего служат датчики? Изобразите схему включения ваттметра. По какой формуле вычисляется неизвестное сопротивление, измеренное Гостом, при его электрическом равновесии?
ГЛАВА VII ТРАНСФОРМАТОРЫ
§ 80. ОБЩИЕ СВЕДЕНИЯ О ТРАНСФОРМАТОРАХ
Трансформатором называется статический электромагнитный аппарат, преобразующий переменный ток одного напряжения в переменный ток той же частоты, но другого напряжения.
Трансформаторы получили очень широкое практическое применение для передачи электрической энергии на большие расстояния для распределения энергии между ее приемниками и в различных выпрямительных, сигнализационных, усилительных и других устройствах.
При передаче электрической энергии от электростанций к ее потребителям большое значение имеет величина тока, протекающего по проводам. В зависимости от силы тока выбирается сечение проводов линии передачи энергии и, следовательно, определяется стоимость проводов, а также и потери энергии в них.
Если при одной и той же передаваемой мощности увеличить напряжение, то ток в той же мере уменьшится, а это позволит применять провода с меньшим поперечным сечением для устройства линии передачи электрической энергии и уменьшит расход цветных металлов, а также уменьшит потери мощности в линии.
Поперечные сечения проводов и потери мощности в них определяются следующими выражениями:
так как
где q — поперечное сечение провода, мм2,
I — сила тока, а,
δ — плотность тока, а/мм2,
U — напряжение в линии электропередачи, в,
Р— передаваемая мощность, вт,
Рл — потери мощности в линии электропередачи, вт,
r— сопротивление провода, ом,
l — длина линии, м,
ρ—удельное сопротивление материала провода,
Таким образом, при неизменной передаваемой мощности поперечное сечение провода и потери мощности в линии обратно пропорциональны напряжению.
Электрическая энергия вырабатывается на электростанциях синхронными генераторами при напряжении 11—18 кв (в некоторых случаях при 30—35 кв). Хотя это напряжение очень велико для непосредственного его использования потребителями, однако оно недостаточно для экономичной передачи электроэнергии на большие расстояния. Для увеличения напряжения применяют повышающие трансформаторы.