Поглощение света
Таким образом, амплитуда вынужденных колебаний оптического электрона зависит от соотношения частот и .
Если рассматривать молекулы или атомы диэлектрика как системы, в состав которых входят электроны, находящиеся в молекулах в состоянии равновесия, то под влиянием электрического поля световой волны эти заряды смещаются из положения равновесия на расстояние x , превращая таким образом молекулу в электрическую систему с электрическим моментом (дипольный момент). Поляризованность, определяется как дипольный момент единицы объема диэлектрика . При концентрации атомов в диэлектрике равной численное значение поляризованности единицы объема можно рассчитать по формуле: .
Для изотропных диэлектриков (исключая сегнетоэлектрики) поляризованность линейно зависит от напряженности электрического поля : . По определению, диэлектрическая восприимчивость среды и диэлектрическая проницаемость связаны соотношением: и тогда можно записать, что
Поскольку , то
Теперь, чтобы получить выражение для определения показателя преломления, необходимо подставить вместо x его значение, ранее полученное из решения соответствующего дифференциального уравнения. Окончательно получим выражение для зависимости показателя преломления от частоты световой волны в виде
или
Рис.5-4 дает графическое представление этой зависимости.
Рис. 5-4. Зависимость показателя преломления n от частоты вблизи одной из резонансных частот .
Если в веществе имеются электроны, совершающие вынужденные колебания с различными собственными частотами ωоi , то
где no – концентрация атомов, ωоi – собственные частоты колебаний электронов, m – масса электрона, εо – электрическая постоянная.
Рассмотрение всего ансамбля оптических электронов приводит к заключению, что электроны в атомах обладают определенным набором собственных частот колебаний ωоi . Графическая зависимость такого рассмотрения дана на рис. 5-5.
Рис.5-5. Зависимость показателя преломления от частоты при наличии нескольких резонансных частот .
Все силы, действующие внутри атомов и молекул, имеют электрическую природу. Однако объяснить этими силами существование и структуру атомов и молекул классическая физика не в состоянии. Это было сделано в рамках квантовой механики и привело к поразительному результату, что в отношении дисперсии и поглощения света атомы и молекулы ведут себя так, как если бы среда представляла собой набор осцилляторов с различными собственными частотами и коэффициентами затухания, подчиняющимися классическим уравнениям Ньютона, т. е., законам классической физики. Однако нужно не забывать, что собственные частоты и коэффициенты затухания не могут быть вычислены на основе классической модели. Их нужно рассматривать как формально введенные постоянные, а их истинный физический смысл может быть раскрыт только в рамках квантовой теории. Классическая теория представляет лишь модель, которая, тем не менее, приводит к правильным окончательным результатам.
Итак, теория предполагает, что электроны, обладающие в атомах и молекулах набором собственных частот колебаний ωоi , под действием падающей световой волны совершают вынужденные колебания с частотой ω, совпадающей с частотой падающей световой волны.
Первичная электромагнитная волна, распространяясь в веществе, вызывает вынужденные колебания электронов, и они становятся источниками вторичных волн. Вторичные волны, складываясь с первичной, образуют результирующую волну с амплитудой и фазой, отличными от амплитуды и фазы первичных волн. В результате волна проходит через вещество с фазовой скоростью, отличной от скорости, с которой она распространялась бы в вакууме.
Все изложенное относится к излучению изолированного атома. В случае среды, состоящей из близко расположенных атомов, надо принять во внимание, что атом не только теряет энергию на излучение, но и получает энергию, излучаемую другими атомами. Если среда оптически однородна, то оба эти процесса в точности компенсировали бы друг друга. В отсутствие других причин затухания колебания атома были бы незатухающими. Таким образом, плоская бегущая световая волна распространялась бы в идеализированной среде без ослабления.
6. Поглощение света
Поглощение света – это уменьшение интенсивности оптического излучения (света), проходящего через среду, заполненную веществом.
Как уже было отмечено ранее, в идеализированной однородной среде колеблющиеся электроны возвращают всю падающую энергию в виде вторичных волн, и поглощения света не происходит. В реальном теле часть падающей световой энергии переходит в другие формы (главным образом, в тепловую) – наблюдается поглощение света.
Особый интерес представляет случай, когда частота световой волны ω совпадает с частотой собственных колебаний электронов ωоi . При этих частотах энергия световой волны полностью поглощается веществом. Такое явление называется резонансным поглощением света, а соответствующая частота – резонансной. Именно в области резонансного поглощения наблюдается аномальное поведение дисперсии. Вещество, состоящее из атомов или молекул с определенным набором частот собственных колебаний электронов ωоi даст в спектре прошедшего через него света узкие линии поглощения. Коэффициент преломления окажется постоянным в областях, далеких от линий поглощения, и будет быстро меняться с частотой и сильно отличаться от единицы вблизи каждой линии поглощения, где взаимодействие света с веществом велико.
Экспериментальная зависимость показателя преломления n и коэффициента поглощения от длины волны вблизи одной из резонансных частот ( – длина волны, соответствующая резонансной частоте ωо) представлена на рис. 6-1.