ВУЗы по физике Готовые работы по физике Как писать работы по физике Примеры решения задач по физике Решить задачу по физике онлайн

Приём информации из пространства


Фотон – локализованное в пространстве магнитное образование, которое движется в пространстве со скоростью света. При этом он имеет такую магнитную структуру (рис. 84), у которой длина волны , равная радиусу фотона . Все его параметры, в том числе и частота, изменяются в интервале 15 порядков.

Рис. 84. Схема кольцевых магнитных полей фотона

На рис. 82, 83 импульсы излучаемых фотонов представлены в виде совокупности небольших шариков. Длина волны каждого фотона, входящего в состав импульса фотонов, на много порядков меньше расстояния между импульсами фотонов, называемого длиной волны излучения. У нас есть возможность определить длину волны или радиус каждого фотона, входящего в состав импульсов фотонов.

Длины волн единичных фотонов, излучаемых валентными электронами атомов антенны передатчика, зависят в обычных условиях от её температуры. Если она равна, например, , то электроны антенны непрерывно излучают и поглощают фотоны с длиной волны, примерно, равной

. (56)

Это – фотоны инфракрасного диапазона. Мы уже описали, как они генерируют так называемый фоновый шум. Чтобы выделить искусственную информацию, передаваемую фотонами, излучаемыми электронами, необходимо увеличить возбуждение электронов, чтобы они излучали фотоны с большей энергией, чем фотоны, формирующие температуру окружающей среды и антенны. Различие длин волн фотонов, формирующих фоновый шум от длин волн фотонов, передающих информацию, зависит от интенсивности искусственного воздействия на электроны антенны. Но в любом случае, длина волны фотонов (рис. 84), порождаемых искусственными импульсами будет меньше длин волн фотонов, формирующих эти импульсы (рис. 82).

Если передатчик излучает импульсы с длиной волны, например, 0,50 м, в виде фотонов с длинами волн несколько меньшими, тех, что формируют температуру среды вокруг антенны, например с длинами волн , то длина волны несущая информацию в пространстве (расстояние между импульсами фотонов (рис. 82, 83), будет больше длин волн фотонов, несущих эту волну, в раз.

Приём информации из пространства

Если на электроны приёмной антенны действуют, только фотоны, формирующие температуру среды, окружающей антенну, а значит и температуру самой антенны, то свободные электроны ориентированы в таком проводе или антенне произвольно. Конечно, на эту произвольность влияют валентные и другие электроны атомов и молекул. Мы уже знаем, что размеры свободных электронов, примерно, в 1000 раз меньше размеров молекул. Это значить, что электроны атомов слабо влияют на ориентацию свободных электронов и даже, если это влияние есть, то беспорядочное расположение атомов провода или антенны должно формировать беспорядочную ориентацию свободных электронов в них.

Сразу возникает вопрос: как начнут вести себя свободные электроны антенны, если к ней придёт импульс фотонов? Примут ли они ориентированное положение или просто возбудятся и это возбуждение передадут вдоль антенны к устройствам, принимающим их возбуждение?

В главе «Элементы корпускуляроной оптики» показано, что все отражающиеся фотоны поляризуются в плоскости перпендикулярной плоскости отражения. Из этого следует, что встретившись с проводом антенны, они тоже поляризуются и этим своим процессом ориентируют свободные электроны в проводе, формируя в нем электрический потенциал, распространяющийся вдоль провода к приёмному устройству.

Далее, обратим внимание на то, что термопара представляет собой два провода из разных материалов, спаянные между собой. Известно, что если спаянные концы проводов будут иметь разную температуру, то на свободных концах термопары появится ЭДС, то есть по образовавшейся сети потечёт ток.

Так как температуру спаянных проводов формируют фотоны, то разную температуру формируют разные фотоны. Это значит, что свободные электроны в каждом проводе термопары возбуждаются с разной интенсивностью. Появление тока в цепи – свидетельство упорядоченной ориентации свободных электронов вдоль провода. Из этого следует, что воздействие импульса фотонов на свободные электроны антенны должно приводить их из хаотического расположения в проводе в упорядоченное [2].

В любом случае в цепи антенна – приёмное устройство пришедший импульс фотонов действует лишь на часть этой цепи. Благодаря этому в такой цепи возникает разность потенциалов, которая ориентирует электроны во всех элементах этой цепи и в ней возникает ток. Этот процесс можно усилить, если приёмной антенне, состоящей из совокупности стержней, придать элементы параболичности. Тогда фотонная волна будет возбуждать не все свободные электроны такой антенны одновременно, а возбудит вначале те, которые находятся в стержнях на периферии воображаемой параболической поверхности. В результате уже в самой такой антенне появиться разность потенциалов и по её электропроводящим элементам пойдёт импульс, ориентирующий свободные электроны и появится ток, который усилит приёмное устройство [2].

Поскольку фотоны – локализованные в пространстве образования, то мощность сигнала, который они формируют в антенне приемника, зависит от количества фотонов в каждом импульсе, дошедших до этой антенны и их индивидуальной энергии, определяемой длиной волны каждого из фотонов, входящего в импульс. В этом случае напряжённость магнитного поля каждого фотона остаётся постоянной и не зависит от расстояния, которое он проходит от антенны передатчика до антенны приемника или от звезды к Земле.

Если приёмная антенна имеет форму стержня, то эффективность приёма сигнала из пространства такой антенной невелика, так как импульсы фотонов. несут в себе небольшой потенциал, возбуждающий электроны приёмной антенны. Чтобы усилить действие импульсов фотонов, их принимают с помощью, так называемых параболических антенн, поверхность которых не поглощает, а отражает эти импульсы и направляет их в фокус параболы, где и располагается приёмная часть такой антенны [2].

Вполне естественно, что электроны приёмного элемента такой антенны, расположенного в её фокусе, будут подвергнуты мощному импульсному воздействию сфокусированным потоком фотонов, что способствует значительному усилению приёмного сигнала.

Таким образом, импульсное изменение электрического поля передаётся всем свободным электронам, сориентированным вдоль провода, и одновременно сопровождается излучением фотонов в пространство. В результате формируются продольные волны электромагнитных импульсов вдоль провода и одновременно импульсы фотонов, излучаемых перпендикулярно проводу (рис. 82). Так одна и та же информация передаётся в двух направлениях: вдоль провода и перпендикулярно ему — в пространство [2].

Вполне естественно, что для описания фотонной волны (рис. 81) нет нужды вводить в уравнение такой волны напряженности электрических и магнитных полей и не существующие токи смещения. Достаточно написать уравнения изменения напряжения, тока и напряжённости магнитного поля (20), (21), (22) и ввести в них необходимые параметры, характеризующие колебательный процесс, излучающий импульсы фотонов (рис. 81).

Конечно, нам интересно знать детали опытов с радиоволнами, в которых отражена передача радиоинформации. Восемнадцать таких опытов описано в учебном пособии для школьников: Н. М. Шахмаев, С. Е. Каменецкий. Демонстрационные опыты по электродинамике. М. «Просвещение» — 1973. Анализ этих опытов показывает, что в них отразился весь спектр поведения световых фотонов в опытах по оптике. Этого вполне достаточно для заключения о том, что носителями радиоволн являются фотонные (рис. 81) , но не электромагнитные волны Максвелла (рис. 78, с). Вполне естественно, что фотонные радиоволны формируют фотоны невидимых диапазонов, а видимые фотоны используются при передаче информации по, так называемым волоконным волноводам.

Заключение

Импульсное изменение напряжения передаётся всем свободным электронам, сориентированным вдоль провода, и одновременно сопровождается излучением ими фотонов в пространство. В результате формируются продольные волны электромагнитных импульсов вдоль провода и одновременно импульсы излученных фотонов. Так одна и та же информация передаётся в двух направлениях: вдоль провода и перпендикулярно ему — в пространство.

Уравнения Максвелла не имеют никакого отношения к описанию процессов формирования и передачи электронной информации.

22. Фотоэффект

Явление фотоэффекта было открыто Г. Герцем в 1887 г. В 1888-1890 годах А. Г. Столетов установил, что максимальный фотоэлектрический ток прямо пропорционален падающему лучистому потоку (рис. 85). Наиболее полно явление фотоэффекта было исследовано Ф. Ленардом в 1900г. В 1897 году Д. Томпсон открыл электрон и начались попытки поиска интерпретации этого эффекта. Считается, что это удалось сделать А. Эйнштейну. Он предположил простую математическую модель (57), которая, как считается до сих пор, великолепно описывает количественные характеристики этого эффекта и позволяет правильно интерпретировать его физическую суть. За это ему была присуждена Нобелевская премия в 1922 году [2].

, (57)

где — кинетическая энергия фотоэлектрона, испускаемого фотокатодом (-); — энергия фотона, но какого именно, не поясняется; — работа выхода фотоэлектрона — константа.

Предполагалось, что фотоны с энергией , облучающие фотокатод (К), выбивают из него электроны, кинетическая энергия которых равна разности энергии фотона и энергии, равной работе выхода . В электрической цепи в этот момент появляется ток. Однако, как предполагалось, если на коллекторе А сформировать отрицательный потенциал (рис. 85, b), то можно задержать поток электронов к нему, вылетающих из катода К. Этот факт регистрируется отсутствием тока в цепи, а напряжение, при котором это происходит, называется задерживающим потенциалом . Оказалось, что величина задерживающего потенциала увеличивается ступенчато с увеличением частоты света, и не зависит от его интенсивности. Из этого был сделан вывод о том, что величина задерживающего потенциала определяется кинетической энергией электронов, излучаемых фотокатодом К под действием светового облучения. Считалось, что фотоны с большей частотой, имея большую энергию, не только выбивают электроны катода К, но и сообщают им большую кинетическую энергию , поэтому для задержания таких электронов (рис. 85, b) требуется больший отрицательный электрический потенциал .

Рис. 85. Схемы опытов А. Г. Столетова

Итак, считается, что фотон выбивает электрон из катода. Делать это он может лишь при одном условии – передавая свой импульс электрону. Как же он может это сделать, если размер () светового фотона на 5 порядков больше размера электрона ()? Ответ один: передача фотоном импульса электрону, находящемуся в атоме, абсолютно невозможна без процесса поглощения фотона электроном.

Экспериментальные исследования фотоэффекта обычно проводят с фотокатодами (отрицательно заряженными пластинами) из щелочных металлов. Например, известно, что работа выхода фотоэлектрона с литиевого фотокатода равна W=2,4 eV. Это суммарная энергия связи между двумя (1 и 1’) валентными электронами молекулы лития (рис. 86).

Рис. 86. Схема молекулы лития

Появление тока в облучаемой пластине может быть следствием двух одновременных событий.

Первое – поглощение фотона валентным (1 или 1’) или не валентным (2 или 2’ или 3 или 3’) электроном атома (рис. 86).

Обратим внимание на то, что энергия связи принадлежит одному фотону. После поглощения этого фотона одним из валентных электронов (1 или 1’) она распределяется между двумя электронами (1 и 1’) поровну и становится равной 1, 2 eV (рис. 86).

Конечно, не все фотоны поглощаются электронами материала катода. Часть из них отражается и этот процесс тоже влияет на формирование тока в цепи фотокатод – источник питания. Нам уже известно, что фотоны, падающие на отражающую поверхность, поляризуются в плоскости отражения. В результате у них все спины оказываются перпендикулярными плоскости отражения 4 и они, действуя на свободные электроны, упорядочивают их ориентацию, которая немедленно передается всем свободным электронам, и приборы фиксируют это, как появление тока в цепи. Чем больше фотонов попадёт на поверхность катода, тем мощнее будет их суммарное магнитное поле в момент отражения, которое и сориентирует большее количество электронов и величина тока, однонаправленного движения электронов увеличится [2].

Вторая причина появления тока в проводах – поляризация фотонов в момент отражения. В результате они направляют свои спины вдоль провода и они ориентируют спины свободных электронов в проводе в таком же направлении.

Таким образом, первое событие увеличивает количество свободных электронов в проводе, а значит и величину тока. Второе событие формирует направленный ток в проводе.

Результаты опытов по фотоэффекту позволяют проверить достоверность описанных событий. Для этого надо определить главное квантовое число , которое определяет энергию связи любого электрона любого атома, находящегося в свободном состоянии. В этом случае электроны могут занимать, так называемые стационарные энергетические уровни и величины их энергий связи с протонами определяются по элементарной зависимости . Здесь — энергия связи электрона с протоном ядра, соответствующая его первому энергетическому уровню . Она содержится в экспериментальных спектрах и определяется по специальной методике.

Если не валентный электрон атома, находящегося в составе молекулы, поглощает такой фотон, который уменьшает его энергию связи с протоном ядра до нуля и он становится свободным, то главное квантовое число в этом случае будет дробным числом.

Итак, экспериментальное значение, так называемой энергии выхода (57) фотоэлектрона, должно позволить вычислить величину главного квантового числа , при котором электрон, поглотивший фотон, становится свободным. Попытаемся найти связь работы выхода фотоэлектрона с главным квантовым числом .

Из экспериментальной спектроскопии следует, что электроны удаляются от ядер атомов ступенчато. Ступенчато меняются и их энергии связи с протонами ядер, поэтому появление дополнительных свободных электронов в фотоэффекте К (рис. 85) – результат потери ими связи с протонами ядер атомов. Следовательно, закономерность этой потери должна подчиняться закону излучения и поглощения фотонов электронами атомов. Из этого следует, что математическая модель (57), предложенная А. Эйнштейном для интерпретации фотоэффекта, должна быть идентична установленной нами математической модели формирования спектров атомов и ионов. Она имеет вид

, (58)

где — энергия фотона, поглощаемого или излучаемого электроном; — энергия ионизации электрона, равная энергии такого фотона, после поглощения которого электрон теряет связь с протоном ядра и становится свободным; — энергия связи электрона с протоном ядра атома, соответствующая его первому энергетическому уровню; — главное квантовое число; — энергия связи электрона с протоном ядра, соответствующая энергетическим уровням .

Соотношение (58) следует из экспериментальной спектроскопии, поэтому оно является математической моделью закона формирования спектров атомов и ионов. Эйнштейновское уравнение (57) также описывает аналогичный процесс поглощения фотонов электронами. Это дает нам основание предположить идентичность уравнений (57) и (58) и однозначность их интерпретации. Действительно, из приведенных уравнений следует

. (59)

Это означает ошибочность представлений о физической сути энергии . Это не кинетическая энергия электрона, а энергия поглощённого им фотона. Из этого следует, что электрон атома или молекулы после поглощения фотона становится свободным и никуда не вылетает. Он остаётся в зоне получения свободы и увеличивает количество свободных электронов в этой зоне. Конечно, отделившись от молекул, электрон имеет какую-то кинетическую энергию, но она недостаточна, чтобы выйти за пределы тела, в котором произошло это событие. Этот процесс идёт непрерывно почти во всех телах. Увеличение частоты фотонов, а значит и их энергий, означает, что они освобождают от связей электроны с большими энергиями связи (2 или 2’ или 3 или 3’ рис. 86) и таким образом увеличивают количество свободных электронов в теле, облучаемом фотонами. Далее

. (60)

Из этого явно следует, что величина энергии в уравнении (57) А. Эйнштейна является энергией ионизации электрона, излучаемого материалом фотокатода. Она равна энергии такого фотона, поглотив который электрон становится свободным. Из уравнений (57) и (58) также следует.

. (61)

Новое прояснение: работа выхода фотоэлектрона равна энергии связи электрона в момент пребывания его на определенном энергетическом уровне в атоме или молекуле.

Таким образом, ошибочная интерпретация физической сути составляющих формулы (57) А. Эйнштейна повлекла за собой ошибочную интерпретацию физической сути фотоэффекта, поэтому возникает необходимость разобраться в сути этой ошибочности.

Экспериментальные исследования фотоэффекта обычно проводят с фотокатодами (отрицательно заряженными пластинами) из щелочных металлов. Например, известно, что работа выхода фотоэлектрона с литиевого фотокатода равна W=2,4 eV. Это энергия связи между двумя (1 и 1’) валентными электронами молекулы лития (рис. 81). Энергия ионизации каждого из указанных электронов в атомарном состоянии лития равна , а энергия связи его с ядром, соответствующая первому энергетическому уровню, — . Учитывая это, и используя математическую модель закона формирования спектров атомов и ионов (58), получим теоретический спектр этого электрона (теор.), который полностью совпадает с экспериментальным (эксп.) спектром (табл. 9). При этом формула (61) позволяет рассчитать энергии связи этого электрона с ядром атома (по Эйнштейну работу выхода), соответствующие всем () энергетическим уровням этого электрона.

Это даёт нам возможность определить номер энергетического уровня валентного электрона, с которого он уходит в свободное состояние после поглощения фотона. Подставляя в формулу (61) и , найдем =2,4. Поскольку величина оказалась дробным числом, то это значит, что поглощённый фотон освободил один из валентных электронов (1 или 1’) атома лития (рис. 86). Энергия связи электронов свободных атомов лития изменяется в этом случае в интервале 1,56…3,51eV. Величина энергии распределяется между двумя валентными электронами молекулы лития.

Для фотоэлектрона натриевого фотокатода имеем: , и [1]. Используя математическую модель (58) закона формирования спектров атомов и ионов и формулу (61), получим спектр фотоэлектрона натрия.

Величина , определенная с помощью формулы (61), оказывается равной . Из этого также следует, что источником фотоэлектронов натриевого фотокатода являются валентные электроны этого атома, входящего в состав молекулы. Энергии связи между электронами атомов натрия в момент, когда он находятся в молекуле, изменяются в интервале 1,45…3,27 eV.

Из изложенного следует, что эйнштейновская кинетическая энергия электрона является энергией поглощённого фотона, а энергия эйнштейновского фотона равна энергии ионизации электрона. Эйнштейновская работа выхода равна энергии связи электрона с ядром атома. Таким образом, потребовалось почти 100 лет, чтобы установить истинный физический смысл математических символов закона фотоэффекта (57), открытого А. Эйнштейном.

Анализ закона (58) формирования спектров атомов и ионов и результаты расчета спектров показывают, что энергия связи электрона с ядром атома меняется ступенчато. Чем больше энергия связи электрона с протоном ядра, тем большая энергия фотонов требуется для разрыва этой связи, но не для сообщения кинетической энергии электрону, которому дали название фотоэлектрон.

Например, чтобы освободить от связи один из не валентных электронов (2 или 2’, 3 или 3’) молекулы лития (рис. 86) необходимо ступенчато увеличить энергию облучаемых фотонов, примерная величина которой равна 3,51 eV.

Из изложенного следует обилие противоречий у существующей ошибочной интерпретации фотоэффекта, но корректность математической модели (57), описывающей этот эффект, сохраняется. Это обусловлено тем, что, как мы теперь установили, математическая модель (57) описывает лишь процесс перехода электрона из связанного состояния в свободное и не описывают его вылет из фотокатода.

Конечно, мы не имеем ещё информации о процессе поглощения фотона электроном. Можно только предположить, что в момент отражения фотона от поверхности фотокатода его скорость может меняться в широких пределах и при угле отражения, близком к 90, он имеет фазу остановки, в результате которой его кольцевые магнитные поля (рис. 84) формируют магнитные лучи, на концах которых появляется магнитная полярность. Взаимодействуя с противоположной магнитной полярностью электрона (рис. 1), масса фотона, сформированная самим магнитным полем, образно говоря, перетекает (перекачивается) в структуру электрона, уменьшая его энергию связи с протоном ядра или с валентным электроном соседнего атома в молекуле (рис. 86).

Конечно, не все фотоны поглощаются электронами материала катода. Часть из них отражается и этот процесс тоже влияет на формирование тока в цепи фотокатод – источник питания. Нам уже известно, что фотоны, падающие на отражающую поверхность, поляризуются в плоскости отражения (не отражающей плоскости, а плоскости отражения). В результате у них все спины оказываются перпендикулярными плоскости отражения и они, формируют упорядоченное магнитное поле, которое начинает действовать на свободные электроны и таким образом придавать им упорядоченную ориентацию (рис. 82), которая немедленно передается всем свободным электронам, и приборы фиксируют это как появление тока в цепи. Чем больше фотонов попадёт на поверхность катода, тем мощнее будет их суммарное магнитное поле в момент отражения, которое и сориентирует большее количество электронов и величина тока, однонаправленного движения электронов увеличится (рис. 85, а).

А. Эйнштейн приписал энергии связи электрона с протоном работу выхода, которая, как считалось, формирует кинетическую энергию освободившемуся электрону. Теперь мы знаем, что освободившийся электрон не обладает кинетической энергией, он остаётся в зоне освобождения от связей и увеличивает количество свободных электронов в этой зоне.

Мы не будем описывать другие противоречия в изложении сути фотоэффекта, как в учебной, так и научной литературе, но отметим, что у одних авторов светом облучается катод, имеющий знак минус, а у других — анод, имеющий знак плюс, а эффект у всех получается одинаковый. В результате значительно усложняется корректная интерпретация многочисленных экспериментов по фотоэффекту. Поэтому начнём с анализа эксперимента А. Г. Столетова (рис. 85).

Чтобы облегчить процесс формирования правильного понимания физической сути фотоэффекта, отметим главное – наличие в электрических проводах только электронов – носителей отрицательных зарядов и полное отсутствие протонов – носителей положительных зарядов. Обусловлено это тем, что соседство протонов и электронов, как мы уже отметили многократно, автоматически приводит к формированию атомов водорода, которые существуют лишь в плазменном состоянии при температуре более 5000 С.

Положительный и отрицательный потенциалы присутствуют в электролитических растворах. Носителями этих потенциалов являются электроны отрицательно заряженных ионов и протоны атомов водорода, входящие в положительно заряженные ионы. При этом отрицательно заряженные ионы приносят электроны к аноду — клемме батареи, которая обозначена знаком плюс (+). От этой клеммы они движутся по проводам, совершают работу во внешней сети и возвращаются к минусовой (-) клемме батареи. Здесь электроны принимают ионы, содержащие атомы водорода, в составе которых — положительно заряженные протоны, формирующие положительные потенциалы этих ионов. Так что по электрическим проводам движутся только электроны. И движутся они от анода (+) к катоду (-), если источником энергии является батарея. Это – главная информация, без знания которой невозможно найти непротиворечивую интерпретацию фотоэффекта.

На рис. 85, а показана схема эксперимента А. Г. Столетова. В электрическую сеть батареи Б включены две пластины конденсатора. Пластина А, в виде медной сетки, подключена к плюсу батареи, а цинковая пластина К – к минусу. Когда свет от источника S, проходя через медную сетку А, падает на отрицательно заряженную цинковую пластину К, то гальванометр G показывает ток.

Причина показаний гальванометра – появление разности потенциалов между пластиной К и отрицательной клеммой батареи. Эта разность обусловлена тем, что новые свободные электроны, появившиеся в пластине К, формируют процесс выравнивания потенциалов. Они делают это, перемещаясь к минусовой клемме батареи. Процесс этого перемещения фиксирует гальванометр G.

Это центральный момент в понимании сути фотоэффекта, поэтому на него надо обратить особое внимание и запомнить его суть – выравнивание потенциалов.

Если к пластине К подключить плюс батареи вместо минуса (рис. 85, b), то электроны, идущие от плюса батареи, заряжают её отрицательно. Новые электроны, появившиеся в результате облучения той же пластины светом, не могут двигаться к плюсовой пластине батареи, окружённой отрицательно заряженными ионами. Отсутствие показаний гальванометра G подтверждает этот факт.

Конечно, достоверность описанной интерпретации нуждается в дополнительной проверке. Для этого надо поставить второй гальванометр в цепь: минус батареи – пластина А (рис. 85, c). Несмотря на то, что площадь сетчатой пластины A значительно меньше площади цинковой пластины К гальванометр покажет наличие тока в этой цепи. Он будет фиксировать движение новых свободных электронов, появляющихся в пластине А в результате её облучения, к положительно заряженным ионам, которые концентрируются у поверхности отрицательно заряженной пластины батареи, клемма которой обозначена знаком минус. Жаль, что нам не удалось найти литературный источник, в котором описывалось бы действие гальванометра, показанного на рис. 85, b и мы полагаем, что студенты сами проверят это.

Добавим к изложенному: существует большое количество опытов, в которых показано, что свободные электроны могут появляться в облучаемой пластине и при отсутствии на ней какого-либо первоначального потенциала. Установлено, что цинковые пластины наиболее чувствительны к облучению ультрафиолетом.

Строго говоря, особой нужды в проверке достоверности описанной интерпретации физической сути опыта А. Г. Столетова не существует, так как она реализуется в схемах работы солнечных батарей. Электроны атомов солнечных батарей, освобождённые поглощёнными фотонами, никуда не вылетают, а движутся по проводам и пополняют потенциал электролитических батарей. Так работают световые зарядные устройства батарей питания калькуляторов и других многочисленных подобных устройств.

Не будем описывать отличия в схемах экспериментальных установок для анализа фотоэффекта у разных авторов учебников по физике. Они явились следствием непонимания ими физической сути фотоэффекта. Приведём лишь две из них (рис. 85).

Давно существующая интерпретация фотоэффекта базируется на представлении, что электроны, выбиваемые фотонами из анода А и направляющиеся к катоду К, можно задержать увеличением отрицательного потенциала на катоде (рис. 85, а). Однако, сразу возникает вопрос: откуда электроны берут столь значительную энергию, чтобы преодолевать отрицательный потенциал на катоде?

Из новой теории спектров, как мы уже показали, однозначно следует, что электрон, поглотивший фотон с энергией, равной энергии его связи с протоном, становится свободным и остаётся в зоне своего рождения вместе с другими свободными электронами. Так что нет у него начальной кинетической энергии, чтобы вылететь из зоны своего освобождения, поэтому есть все основания полагать, что амперметр в схеме на рис. 87, а не будет ничего показывать.

Наташа

Автор

Наташа — контент-маркетолог и блогер, но все это не мешает ей оставаться адекватным человеком. Верит во все цвета радуги и не верит в теорию всемирного заговора. Увлекается «нефрохиромантией» и тайно мечтает воссоздать дома Александрийскую библиотеку.

Другие статьи


Похожая информация


Распродажа дипломных

Скидка 30% по промокоду Diplom2020