Ртутный выпрямитель
При уменьшении напряжения источника электрической энергии, подключенного к стабилизатору, в цепи уменьшается сила тока. Соответственно увеличивается сопротивление стабилитрона и вновь напряжение на его зажимах остается неизменным, а напряжение на ограничительном сопротивлении уменьшается.
Таким образом, при нормальном режиме работы стабилитрона путем изменения силы тока автоматически поддерживается неизменное напряжение на нагрузке, подключенной к его зажимам.
Стабилитрон также стабилизирует напряжение на нагрузке при изменении величины этой нагрузки, т. е. силы тока в ней. Основными показателями, по которым выбираются стабилитроны, являются: напряжение стабилизации, напряжение зажигания, наибольший и наименьший токи.
Напряжение стабилизации несколько меньше напряжения зажигания (в пределах от единиц до нескольких десятков вольт). Так, стабилитрон типа СГ4С рассчитан на стабилизируемое напряжение в 150 в. Наименьший ток его 5 ма, наибольший ток 30 ма.
§ 146. ТИРАТРОН
В различных уставах автоматики большое распространение получил управляемый ионный пробор – тиратрон.
Тиратрон представляет собой триод, наполненный смесью инертных газов. В стеклянном баллоне тиратрона помещаются анод, катод и управляющий электрод – сетка. Катод нагревается
электрическим током. На анод подается положительное напряжение, на сетку — отрицательное напряжение, удерживающее (запирающее) электроны в промежутке катод-сетка.
Сетка тиратрона в отличие от сетки триода не позволяет изменять силу анодного тока. Вследствие наличия газа в колбе тиратрона его с помощью сетки можно лишь отпереть — зажечь, но нельзя погасить. После зажигания тиратрона сетка теряет свое управляющее свойство.
Допустим, что на сетку тиратрона (рис. 202, в) через потенциометр Пс подан большой отрицательный потенциал, а анод имеет по отношению к катоду положительный потенциал. Электрическое поле сетки будет препятствовать движению электронов к аноду.
Постепенное уменьшение запирающего отрицательного напряжения на сетке (путем перемещения движка потенциометра вправо) приведет к появлению небольшого тока в цепи анода тиратрона. При дальнейшем уменьшении этого напряжения большое количество электронов с высокой скоростью будут двигаться к аноду. На своем пути они станут ионизировать атомы газа. Движение ионов газа, в свою очередь, ускоряется электрическим полем анода и катода, при столкновениях с нейтральными атомами они образуют новые ионы в еще большем количестве. Такая лавинообразная ионизация сопровождается скачкообразным нарастанием силы анодного тока и зажиганием тиратрона.
Для ограничения силы тока в цепь анода включают ограничительное сопротивление.
С момента зажигания тиратрона и возникновения электрического разряда в нем сетка теряет свое управляющее свойство. Это связано с тем, что отрицательный заряд сетки оказывается окруженным оболочкой из положительных ионов, которые нейтрализуют его действие.
Прекращение разряда в тиратроне можно осуществить снятием анодного напряжения. За время, которое длится до 1 мсек, в лампе происходит процесс рекомбинации, после чего сетка вновь приобретает управляющее действие.
В цепи сетки тиратрона образуется сеточный ток /с, который является нежелательным. Этот ток создается электронами и положительно заряженными ионами. При положительном напряжении на сетке она притягивает к себе электроны и в ее цепи появляется электронный ток.
При отрицательном напряжении на сетке к ней притягивается некоторое количество положительных ионов и в цепи сетки возникает ионный сеточный ток. Так как ионы имеют большую, чем электроны, массу, то они менее подвижны и поэтому ионный ток в цепи сетки меньше электронного сеточного тока.
Для ограничения бесполезного сеточного тока в ее цепь включают ограничительное сопротивление.
В практике применяют разнообразные марки тиратронов. Они отличаются: напряжением накала, напряжением возникновения электрического разряда, наибольшим отрицательным запирающим напряжением сетки, током накала, средним током анода, временем разогрева катода, сопротивлением в цепи сетки и размерами.
Так, тиратрон ТГ 1-2,5/4 с оксидным катодом прямого накала имеет следующие основные данные: среднее значение тока анода 2,5 а, напряжение накала 5 в, напряжение возникновения электрического разряда 140 в, наибольшее отрицательное напряжение сетки 100 в, ток накала 142 а, время разогрева 1 мин, сопротивление в цепи сетки 0,001—0,1 Мом.
§ 147. РТУТНЫЙ ВЫПРЯМИТЕЛЬ
Работа ртутного выпрямителя основана на использовании авто4 электронной эмиссии и ионизации газа паров ртути.
Ртутные выпрямители делятся на стеклянные и металлические.
Стеклянный однофазный ртутный выпрямитель (рис. 203) имеет колбу из молибденового стекла, из которой выкачан воздух. В колбу впаяны два стальных или графитных электрода А1 и А2 которые являются главными анодами выпрямителя. Нижняя часть колбы заполнена ртутью, которая служит катодом выпрямителя. В ртути помещается металлический стержень, впаянный в стекло. Рядом с ним в колбу впаян стеклянный отросток, в котором также находится ртуть. Здесь размещается анод зажигания A3.
Аноды А1 и А2 соединены с концами вторичной обмотки основного трансформатора Тр0. К катоду К подключают нагрузку. Провод, идущий от нагрузки, соединяют через дроссель Др со средней точкой О вторичной обмотки трансформатора Тр0.
Чтобы ртутный выпрямитель осуществлял выпрямление переменного тока, его необходимо возбудить. Для этого включают рубильники P1 и Р2 и подают переменное напряжение на основной Тр0 и вспомогательный Трв трансформаторы. Затем создают условия для того, чтобы ртуть катода соединялась с ртутью анода зажигания А3. При этом под действием напряжения вторичной обмотки вспомогательного трансформатора Трв электрический ток проходит через рубильники Р2, сопротивление R, анод зажигания А3 и катод К.
Когда колбу возвращают в первоначальное положение, контакт между ртутью, окружающей катод К, и анодом зажигания А3 разрывается, и в этом месте образуется электрическая дуга, а на ртути катода появляется небольшое сильно нагретое светлое катодное пятно. Это пятно является местом испарения ртути.
Вместе с тем вблизи поверхности ртути создается электрическое поле столь высокой напряженности, что оно вырывает свободные электроны с этой поверхности. Это так называемая автоэлектронная (или электростатическая) эмиссия. Электроны, освобожденные на катоде, летят к тому из анодов, который в данный момент имеет положительный потенциал по отношению к катоду (рис. 204). На своем пути электроны сталкиваются с молекулами паров ртути и ионизируют их, т. е. отделяют от них электроны, превращая эти молекулы в положительные ионы. Ударяющие в катод положительные ионы поддерживают температуру катодного пятна.
Нетрудно понять, что дуга в колбе выпрямителя представляет собой поток быстро движущихся электронов от катода к аноду и относительно медленно движущихся (из-за своей большой массы) положительных ионов ртути в обратном направлении.
Когда на аноде вследствие изменения напряжения на концах вторичной обмотки трансформатора изменяется потенциал (вместо по-
положительного создается отрицательный), дуга в колбе перебрасывается к тому из анодов, который в данный момент имеет положительный потенциал, и таким образом соединяет поочередно катод с каждым из анодов. Дуга выполняет функцию практически без инерционного переключателя, соединяющего нагрузку то с одной, то с другой половиной обмотки трансформатора.
Пусть в течение одного полупериода (см. рис. 203) напряжение, подаваемое со вторичной обмотки трансформатора Тр0 на аноде колбы, имеет положительное значение на аноде А1 и отрицательное на аноде А2. Тогда ток пройдет от точки 1 вторичной обмотки трансформатора через анод А1, катод, нагрузку (в направлении, указанном стрелкой), дроссель, среднюю точку вторичной обмотки и правую половину этой обмотки к минусу (точка 2). Через анод А2, имеющий отрицательный потенциал, ток протекать не будет.
В течение второго полупериода полярность напряжения на анодах колбы изменится. Тогда ток пройдет от точки 2 вторичной обмотки трансформатора Тр0, через анод А2, катод, нагрузку, дроссель, среднюю точку вторичной обмотки и левую половину этой обмотки к плюсу (точка 1). В следующие полупериоды процесс повторится и направление выпрямленного тока в нагрузке останется неизменным. Такой ртутный выпрямитель осуществляет двухполупериодное выпрямление переменного тока.
Стеклянные ртутные выпрямители изготовляют на различные напряжения (до 15 000 в) и разные токи.
При выпрямлении переменного тока большой мощности в ртутных выпрямителях выделяется значительное количество тепла. Поэтому вместо хрупких и непрочных стеклянных колб у мощных выпрямителей применены металлические.
Главные детали металлического ртутного выпрямителя: аноды, катоды, анод зажигания и др. — имеют то же назначение, что и в стеклянном выпрямителе. Этот выпрямитель включается в схему также через два трансформатора — основной и вспомогательный.
Металлический выпрямитель оборудован водяным охлаждением. Металлические выпрямители изготовляют большой мощности на высокие напряжения и различные токи. Они питаются от трехфазной сети, поэтому являются многофазными.