ВУЗы по физике Готовые работы по физике Как писать работы по физике Примеры решения задач по физике Решить задачу по физике онлайн

Воздействие терагерцового излучения на биообъекты


Эверскова А. М.

Воздействие терагерцового излучения на биообъекты

Москва Национальный Исследовательский Университет «МЭИ»

2015

Аннотация

Работа выполнена студентом группы ЭР-16-12 Эверсковой Анастасией Михайловной по дисциплине специальные вопросы биофизики в соответствии с учебным планом специальности «Биотехнические системы и технологии» НИУ «МЭИ». В работе рассмотрены механизмы воздействия волн терагерцового диапазона на биообъекты. Работа содержит 10 страниц, 2 литературных источника и 4 иллюстрации.

Введение

В настоящее время наблюдается особый интерес специалистов к освоению и применению волн терагерцового диапазона (ТГц) в биомедицинской физике. Терагерцовым излучением называют электромагнитное излучение, спектр частот которого расположен между инфракрасным и сверхвысокочастотным диапазонами (от Гц до Гц).

Известно, что в ТГц диапазоне лежат спектры многих органических молекул: например, белки ДНК. При помощи данного излучения можно управлять химическими реакциями. Все это свидетельствует о возможности управления характером химических процессов.

В данной работе кратко изложено воздействие терагерцового излучения на биообъекты: рассмотрено влияние температуры и концентрации на характеристику поглощаемой мощности.

1.  Влияние терагерцового излучения на биообъекты

Организм человека – сложная и хорошо защищенная от внешней среды система. Известно, что электрические характеристики биологических тканей и жидкостей сильно зависят от содержания в них воды: скелетные мыщцы и жировая ткань человека составляют почти половину его массы, содержание воды в которых составляет 60-80% [1]. Электрические характеристики воды не могут не сказаться на конечных результатах исследований, так как она является сильным поглотителем коротковолнового электромагнитного излучения.

Терагерцовые волны позволяют управлять направлением трансмембранного транспорта в клетке, так как они не повреждает ее, в отличие от других волн, например, рентгеновских; улучшают введение в клетки различных биологически активных соединений и фармакологических препаратов. Приведенные выше свойства ТГц волн дают возможность их использования в таких направлениях как медицинская диагностика, системы безопасности [3], поскольку эти волны способны находить различия в плотности тканей, позволяют получить детальное изображение всех частей тела под одеждой.

Для расчета мощности электромагнитных полей внутри организма, необходимо знать комплексную диэлектрическую проницаемость биологических тканей и жидкостей [1]. Электрической характеристикой среды является комплексная диэлектрическая проницаемость Ее составляют мнимая и действительная части .

2.1. Постановка задачи

Пользуясь моделью двухуровневой системы, найти зависимость удельной поглощенной мощности в среду, содержащее такое вещество, от частоты.

Исследовать влияние концентрации и температуры на спектральные характеристики.

2.2. Исходные данные:

— приведенная постоянная Планка

Дж/К — постоянная Больцмана

Клм – дипольный момент

м – резонансная длина волны

м/с – скорость света

Вт/м – поток мощности

Гн/м – магнитная постоянная

Ф/м – электрическая постоянная

— частота столкновений

— частота столкновений при Т=300К

рад/с – частота квантового перехода

2.3.  Решение задачи

Решение задачи начнем с нахождения разности населенностей двух энергетических уровней. По условию нам известно, что , а отношение населенностей верхнего и нижнего уровней мы можем выразить через фактор Больцмана: [2]. Таким образом, составим систему уравнений при T=300K):

Найдем значения и :

Затем найдем разность населенностей:

Запишем выражение для комплексной диэлектрической проницаемости:

Характеристическое сопротивление среды:

Для упрощения нашей задачи, пренебрегаем отражением.

Запишем в общем виде выражение для потока мощности:

Примем, что , то напряженность электрического поля:

Необходимо записать выражения для поглощенной мощности. Но перед этим учтем, что коэффициент убывания амплитуды . Получаем:

Построим график зависимости поглощенной мощности (рисунок 1) от расстояния (при том, зависимость нормированная; при T=300К):

Рассмотрим зависимость поглощенной мощности в среду от расстояния (рис.2) с учетом температурной зависимости (зависимость нормированная):

Наташа

Автор

Наташа — контент-маркетолог и блогер, но все это не мешает ей оставаться адекватным человеком. Верит во все цвета радуги и не верит в теорию всемирного заговора. Увлекается «нефрохиромантией» и тайно мечтает воссоздать дома Александрийскую библиотеку.

Другие статьи


Распродажа дипломных

Скидка 30% по промокоду Diplom2020

А ты боишься COVID-19?

Пройди опрос и получи промокод