Принцип неопределенности гейзенберга
Объяснить результаты опытов можно было, только предположив, что электроны обладают волновыми свойствами, и максимумы тока соответствуют максимумам дифракционной картины.
Впоследствии были проведены многочисленные опыты различными исследователями, подтверждающие волновые свойства пучков молекул, протонов и нейтронов. Так, Томсон, ускоряя электроны разностью потенциалов до 56500 В, сумел сфотографировать дифракционные кольца и по ним вычислил длину волны. Эта длина волны оказалась лежащей в рентгеновском диапазоне и совпадала с той, которую давала формула де Бройля.
Принцип неопределенности Гейзенберга.
В классической механике предполагалось, что координата точки и ее импульс могут быть определены одновременно с любой точностью. Попробуем понять, какие трудности возникают, если пытаться применить классические понятия к объекту, обладающему двойственной природой (частица-волна). Рассмотрим так
называемый пакет волн. Если сложить несколько волн с различными частотами, распространяющиеся в направлении х, получится сложная несинусоидальная волна [xi]. Если будет складываться очень большое число волн со всевозможными длинами, образуется волновой пакет шириной Dх (см. рис.). Монохроматическая волна имеет определенную длину волны и, соответственно импульс р = h/l = const,
Dр ® 0, а протяженность ее Dх ® ¥. Очень узкий волновой пакет содержит множество волн, количество которых в пределе стремится к бесконечности и разброс импульсов в нем Dр ® ¥ [xii], а протяженность
Dх ® 0. Т. о., мы приходим к выводу, чем более точно локализован волновой пакет, тем больше оказывается неопределенность в его импульсе.
Гейзенберг выдвинул принцип неопределенности: «Существует принципиальное ограничение на точность, с которой могут быть определены физические величины, не связанное с точностью приборов». Он предложил также формулы, смысл которых в следующем.
соотношения неопределенностей для координаты и импульса [xiii] «Если измеряется координата х частицы и одновременно проекция ее импульса в направлении х — (рх), то минимальные ошибки при их одновременном измерении связаны этими соотношениями» |
Существует также соотношение неопределенности, касающееся энергии и времени.
соотношения неопределенностей для энергии и времени. «Если атомная система обладает энергией Е в течение времени t, то одновременное измерение этих величин возможно лишь с точностью, определяемой данным соотношением» |
Из соотношений неопределенностей следует, что чем точнее определяется одна величина, тем менее точно – другая при одновременном их измерении,. Так как очень мало, то эти ограничения существенны только в атомных масштабах.
С помощью соотношений неопределенностей можно дать простые объяснения фактам, установленным другими путями. Например.
1). Входит ли электрон в состав атомного ядра?
Dх = 10-14 м |
Размер ядра по порядку величины |
Предположим, что электрон находится в ядре. Найдем неопределенность в его импульсе и примем ее равной самому импульсу[xiv] |
|
МэВ |
кинетическая энергия релятивистского электрона в ядре (считаем, что он движется как квант со скоростью с) |
Из опытов по радиоактивному бета-распаду известно, что энергии вылетающих из ядра электронов значительно меньше. Следовательно, в ядре «готовых» электронов нет; электрон образуется в ядре при превращении нейтрона в протон. |
2). Оценим с помощью соотношения неопределенностей энергию связи электрона в атоме водорода.
Dх =0,5 10-10 м |
размер атома Н |
импульс электрона, вычисленный с помощью соотношения неопределенности |
|
эВ |
Энергия нерелятивистского электрона (1 эВ=1,6×10-19 Дж). По порядку величины совпадает с энергией, вычисленной по теории Бора |
3). Найдем предел точности, с которой можно определить частоту и длину волны излучаемого света
время возбужденного атома, спустя это время электрон возвращается на нижележащую орбиту, и атом испускает квант света с энергией Е |
|
Гц |
предел точности определения частоты излучения, найденный с помощью соотношения неопределенности |
предел точности измерения длины световой волны для зеленого света l=(500,0000000 ± 0,0000002) нм с = 3×108 м/с – скорость света в вакууме |
Уравнение Шрёдингера.
Открытие двойственной природы частиц привело к пониманию о невозможности описывать поведение микрочастиц с помощью классических представлений и законов. Стало ясно, что нельзя говорить о траектории частицы, т. е. о точном ее местоположении в любой момент времени. Появилась новая наука – квантовая механика. Вместо слова траектория частицы было введено понятие о вероятности нахождения частицы в том или ином месте пространства. Для описания поведения микрочастиц Шрёдингер (1926 г) предложил дифференциальное уравнение:
i |
нестационарное уравнение Шрёдингера; решение уравнения позволяет найти вероятность нахождения частицы в том или ином мете пространства |
мнимая единица |
|
m |
масса рассматриваемой частицы |
U(x, y,z, t) |
потенциальная энергия частицы, зависящая в общем случае от координат и времени |
оператор Лапласа (или лапласиан) краткое обозначение математической операции дифференцирования в частных производных; — набла (греч. слово nabla — арфа, символ по форме напоминает этот инструмент) |
|
Y(x, y,z, t) |
пси-функция или волновая функция, физического смысла не имеет, но квадрат ее модуля êYê2 – это вероятность нахождения частицы в данном месте пространства (подробнее см. дальше – стационарное уравнение Шрёдингера) |
Математически уравнение Шрёдингера имеет бесконечное число решений, что физически неприемлемо, поэтому на пси-функцию накладываются дополнительные условия:
1).Пси-функция должна быть:
а) конечной – вероятность не может быть больше 1,
б) непрерывной – вероятность не может внезапно оборваться,
в) однозначной – не может быть две вероятности в одной точке,