Распределение энергии в спектре ачт
Все реальные тела при данной температуре излучают всегда меньше, чем АЧТ; r=ro×a< ro, т. к. для всех тел a< 1
2
Если тело не поглощает каких-либо волн, оно и не будет их излучать, поэтому спектры излучения и спектры поглощения идентичны, но как бы перевернуты (максимум на одном соответствует минимуму на другом)
3
Тело, которое сильно поглощает, должно и сильно излучать. Если на пластине на белом фоне нарисовать черный крест, то при нагревании крест будет светиться более интенсивно, чем фон.[1].
Вывод закона Кирхгофа. Пусть некоторое тело 1 обменивается излучением с АЧТ (2), Температуры тел одинаковы. На единицу площади тела 1 падает поток излучения от АЧТ – ro. Часть этого потока r rо отражается от тела 1. В свою очередь тело излучает поток r. При тепловом равновесии ro = r +r rо = r + (1— а) rо Þ r / а = rо (r — коэффициент отражения, а – коэффициент поглощения) |
Распределение энергии в спектре АЧТ.
На рисунке приведена зависимость излучательной способности АЧТ от длины волны при различных температурах. Эти данные получены экспериментально. Из графиков видно, что энергия распределяется по длинам волн неравномерно, с увеличением температуры излучение резко возрастает. При указанных температурах максимумы излучения попадают в инфракрасный диапазон длин волн, на видимую область (0,4-0,75 мкм) приходится незначительное количество энергии [v]. С ростом температуры максимумы смещаются в сторону более коротких длин волн. На втором рисунке приведен для сравнения спектр солнечного излучения. «Провалы» в спектре – это линии поглощения атмосферой, огибающая – спектр излучения АЧТ.
Законы изучения АЧТ. На основании экспериментальных данных были получены следующие законы:
Закон Стефана-Больцмана «Энергетическая светимость АЧТ прямо пропорциональна четвертой степени абсолютной температуры». Из закона следует, что при небольшом увеличении температуры, энергия излучения возрастает очень сильно. Например, при увеличении температуры в 2 раза, излучаемая энергия возрастает в 16 раз. s = 5,67×10-8 Вт/(м2К4) – постоянная Стефана-Больцмана. |
|
Закон смещения Вина: «Длина волны, на которую приходится максимум излучения, обратно пропорциональна абсолютной температуре». Из закона следует, что с увеличением температуры максимум излучения смещается в сторону более коротких волн. b= 2,9×10-3 1/м – постоянная Вина. |
|
Закон общепринятого названия не имеет, иногда называется 2-ым законом Вина: «Максимальная излучательная способность прямо пропорциональна пятой степени абсолютной температуры» С = 1,3×10-5 Вт/(м3.К5)- коэффициент пропорциональности |
Выясним, что представляют собой величины в формулах (§) и (§§) на графике зависимости излучательной способности АЧТ ro от длины волны l.
Кривая излучения АЧТ. dR – поток излучения, приходящийся на интервал длин волн dl (площадь плотно заштрихованной полоски) R – интеграл (см. формулу §§) – на графике – это площадь под всей кривой излучения. lmax – длина волны, на которую приходится максимум излучения |
Гипотеза и формула Планка.
Все попытки получить формулу, описывающую кривую излучения АЧТ оказались безуспешными. Две из полученных формул (формула Вина и формула Релея и Джинса) достаточно хорошо подходили при малых и при больших длинах волн, но полностью описать кривую не могли (см. таблицу ниже). Получить формулу, полностью описывающую кривую излучения АЧТ удалось Планку. Он впервые выдвинул квантовую гипотезу (1900 г) о том, что свет испускается порциями – квантами. Энергия одного кванта пропорциональна частоте излучения. Это была принципиально новая гипотеза, положившая начало развитию квантовой теории.
энергия кванта (фотона), выраженная через частоту n (Гц), циклическую частоту w (1/с)и длину волны l |
|
h = 6,625×10-34 Дж. с — постоянная Планка = 1,05×10-34 Дж. с — называют квантом действия (в устной речи произносится «аш перечеркнутая |
Мы не будем приводить вывод формулы Планка [vi], укажем только, что он основан на методах статистической термодинамики, как и вывод формул Вина и Релея-Джинса, но Планк предположил, что энергия, приходящаяся на одну степень свободы колебательного движения осциллятора равна не кТ/2, а зависит от частоты излучения.
Приближенная формула Вина хорошо выполняется при малых длинах волн (см. рис.) и дает максимум; формула Релея — Джинса дает неплохое совпадение с опытом при больших длинах волн, но кривая уходит в бесконечность, что физически невозможно. (Подробнее – см. таблицу ниже)
Название |
выражение через частоту n |
выражение через длину волны l |
формула Планка |
ª |
ªª |
формула Вина, хорошо выполняется при hn>> kT или l£ lmax = b/T b = 0,0029 м. К (см. ранее закон смещения Вина |
||
формула Релея — Джинса хорошо выполняется при hn << kT или l >> l max = b/T (ех » 1+ х при малых х) |
С1 » 3,7×10-16 Вт. м2 С2»1,4×10-2 м. К |
Из формулы Планка можно получить теоретически все законы излучения АЧТ.
Чтобы получить закон Стефана-Больцмана, нужно просуммировать излучение по всем частотам |
Подставим под интеграл (ª), сделаем замену переменной. Интеграл получается не табличный, но известен из математики; А = const, в которой собраны все постоянные, входящие в формулу Планка |
Рефераты по физике сдают здесьМГМИМО БГУ ГродноГу Другие статьиПохожая информацияУзнать стоимость за 15 минутРаспродажа дипломныхСкидка 30% по промокоду Diplom2020 Подпишись на наш паблик в ВКНужна работа?Заказ дипломных работ у наших партнеров |