ВУЗы по физике Готовые работы по физике Как писать работы по физике Примеры решения задач по физике Решить задачу по физике онлайн

Струйные насосы


Rе=,

где r – радиус центра тяжести сечения канала; u – окружная скорость рабочего колеса на радиусе r; — кинематическая вязкость.

Эти насосы непригодны также для подачи жидкостей, содержащих абразивные частицы, т. к. зазор между колесом и перемычкой 4 не превышает 0,15…0,20 мм.

Для получения более высокого давления применяют многоступенчатые вихревые насосы. В них так же, как и в многоступенчатых центробежных насосах, жидкость проходит через несколько рабочих колес, соединенных последовательно.

На рис. 10.24 показана принципиальная характеристика вихревого насоса.

Рис.10.24

Как видно из графика, характеристика вихревого насоса существенно отличается от характеристики центробежного насоса. При увеличении подачи напор, создаваемый насосом, падает по закону, близкому к закону прямой. Потребляемая мощность при этом не увеличивается как у насоса центробежного, а уменьшается тоже по закону прямой. Поэтому включение насоса рекомендуется производить при открытом положении крана (задвижки) на напорном трубопроводе.

В связи с весьма значительным повышением напора при Q→0 вихревые насосы часто снабжаются предохранительными клапанами.

Для вихревых насосов справедливы те же законы пропорциональности, что и для центробежных.

Промышленностью выпускается вихревые насосы следующих типов: В — вихревой с проходным валом; ВС – то же, самовсасывающий; ВК – вихревой консольный; ВКС – то же, самовсасывающий; ВКО – вихревой консольный обогревной (охлаждаемый); ЦВ – центробежно–вихревой; ЦВС – то же, самовсасывающий и др.

Вихревые насосы получили в настоящее время широкое распространение. Их применяют, когда требуется получить большой напор при малой подаче. Особенно перспективно их использование при перекачивании смеси жидкости и газа. В частности, их применяют для подачи легколетучих жидкостей (бензин, спирт и др.), жидкостей, насыщенных газами, сжиженных газов, кислот, щелочей и других химических агрессивных реагентов.

10.2.2. Струйные насосы

Согласно ГОСТу струйный насос – это насос трения, в котором жидкая среда перемещается внешним потоком жидкой среды, т. е. действие струйных насосов основано на принципе передачи кинетической энергии от одного потока к другому, обладающей меньшей кинетической энергией.

Создание напора у насосов этого типа происходит путем непосредственного смешивания обоих потоков без каких-либо промежуточных механизмов. В зависимости от назначения насоса рабочая и перекачиваемая среды (жидкость, пар, газ) могут быть одинаковыми или разными.

Рассмотрим рабочий процесс струйного насоса и найдем соотношения, определяющие его основные параметры, на примере водоструйного насоса, у которого рабочей и перекачиваемой средой является вода.

Рис. 10.25

В водоструйном насосе (рис.10.25а) вода (активный поток) под давлением по трубе 2, заканчивающейся соплом 3, подается в подводящую камеру 4. Вытекая из сопла с большой скоростью Vс в виде струи, она увлекает за собой сначала воздух, и давление в камере 4 понижается, благодаря чему в камеру по всасывающему трубопроводу 1 поступает вода (пассивный поток). В камере 5 происходит смешение двух потоков и передача энергии от активного потока к пассивному. Из камеры смешения 5 общий поток направляется в диффузор 6, в котором происходит преобразование кинетической энергии в потенциальную (увеличивается давление); давление необходимо для дальнейшего движения воды по напорному трубопроводу. Напор, развиваемый водоструйным насосом, представляет собой разность удельных энергий в выходном сечении III – III и во входном I – I. Без учета потерь он может быть приравнен приращению энергии на участке между сечениями II – II и I – I камеры смешения.

Используя уравнение Бернулли для этих двух сечений и вводя безразмерные параметры и , где и — соответственно площадь поперечного сечения камеры смешения и струи, Qс – расход сопла (струи), после ряда преобразований можно получить следующее выражение:

.

Действительный напор водоструйного насоса будет, конечно, меньше подсчитанного по полученному выше выражению за счет гидравлических потерь в приемной камере, камере смешения и диффузоре. Тем не менее, это выражение позволяет проанализировать изменение основных параметров водоструйных насосов.

На рис.10.25б приведены соотношения для S, равного 1,5; 2,5; и 4,0. Из графика видно, что с увеличением подачи напор, развиваемый водоструйным насосом, уменьшается; увеличение параметра S также вызывает уменьшение напора.

КПД водоструйного насоса определяется отношением полезной энергии жидкости к подведенной энергии, которую можно выразить следующим образом:

Эс=.

Полезная энергия определяется напором и полезной подачей. Последнюю можно определять по-разному. Если водоструйный насос используется для откачивания воды, то полезным является только расход, поступающий в подводящую камеру. В этом случае

;

КПД водоструйного насоса

.

Значение КПД в этом случае не превышает 0,25…0,30.

Если же водоструйный насос используется для водоснабжения или для охлаждения, то полезной является суммарная подача Q+Qc, и тогда

;

.

В этом случае, естественно, КПД выше и может достигать 0,6…0,7.

Водоструйный насос по своему устройству весьма прост и доступен для изготовления в местных условиях. Следует, однако, иметь в виду, что для обеспечения его хорошей работы требуется правильный подбор размеров и тщательное изготовление. Существенное значение имеют форма сопла, расстояние от сопла до камеры смешения, форма камеры смешения и диффузор.

10.2.3. Воздушные насосы

Воздушные насосы (эрлифты) позволяют поднять жидкость на какую-то высоту, используя при этом разность плотностей.

Рассмотрим принцип действия эрлифта на примере подъема воды из скважины (рис.10.26).

Если погрузить в скважину 1 вертикальную трубу 2 и подать в нее через мелкие отверстия 3 (форсунку) воздух от компрессора по трубе 5, то в трубе 2 образуется водовоздушная эмульсия, которая поднимается до поверхности земли и поступает в емкость 6.

Рис.10.26

Из рисунка 10.26 видно, что в сечении 0-0 со стороны скважины 1 с водой и со стороны трубы 2 с эмульсией давление будет одинаковым, т. е. ρвgh = ρэмg(h+Н). высота поднятия эмульсии над уровнем воды в скважине

.

отсюда следует, что высота поднятия воды Н зависит только от двух факторов: плотности эмульсии ρэм и глубины погружения форсунки 3. зависимость между подачей и остальными рабочими параметрами эрлифта можно найти на основе следующих рассуждений.

Энергия, передаваемая компрессором в 1 с объему воздуха Qв. ат, м 3, отнесенному к атмосферному давлению при сжатии его от атмосферного давления рат. до давления р, под которым он подводится к форсунке, при изотермическом процессе определяется по формуле

.

Производимая сжатым воздухом полезная работа заключается в подъеме воды объемом Q, м3, в 1 с на высоту Н:

Nп = ρgQH.

Учитывая неизбежные потери введением КПД эрлифта η, можно написать:

или

Наташа

Автор

Наташа — контент-маркетолог и блогер, но все это не мешает ей оставаться адекватным человеком. Верит во все цвета радуги и не верит в теорию всемирного заговора. Увлекается «нефрохиромантией» и тайно мечтает воссоздать дома Александрийскую библиотеку.

Другие статьи


Похожая информация


Распродажа дипломных

Скидка 30% по промокоду Diplom2020