Включение нагрузки в сеть трехфазного тока
то по этим цепям будут протекать токи. В случае одинакового по величине и характеру сопротивления всех трех фаз приемника, т. е. при равномерной нагрузке, токи в фазах равны по силе и сдвинуты по фазе относительно своих напряжений на один и тот же угол . Как максимальные, так и действующие значения фазных напряжений при равномерной нагрузке равны, т. е. UA= UB=UC. Эти напряжения сдвинуты по фазе на 120°, как показана на векторной диаграмме (рис. 67). Напряжение между любыми точками схемы (см. рис. 66) соответствует векторам (рис. 67) между теми же точками. Так, например, напряжение между точками A и О схемы (фазное напряжение UА) соответствует вектору A-O диаграммы, а напряжение между линейными проводами А и В схемы — вектору линейного напряжения АВ диаграммы. По векторной диаграмме легко установить соотношение между линейным и фазным напряжением. Из треугольника АОа можно записать следующее соотношение:
откуда
т, е. при соединении обмоток генератора звездой линейное напряжение в = 1,73 раза больше фазного (при равномерной нагрузке).
Из схемы (см. рис. 66) видно, что при соединении обмоток генератора звездой ток в линейном проводе равен току в фазах генератора, т. е. Iл=Iф.
На основании первого закона Кирхгофа можем записать, что ток в нулевом проводе равен геометрической сумме токов в фазах генератора, т. е.
При равномерной нагрузке токи в фазах генератора равны между собой и сдвинуты по фазе на 1/3 периода. Геометрическая сумма токов трех фаз в этом случае равна нулю, т. е. в нулевом проводе тока не будет. Поэтому при симметричной нагрузке нулевой провод может отсутствовать. При несимметричной нагрузке ток в нулевом проводе не равен нулю, но обычно нулевой провод имеет меньшее поперечное сечение, чем линейные.
При соединении обмоток генератора треугольником (рис. 68) начало (или конец) каждой фазы соединяется с концом (или началом) другой фазы. Таким образом, три фазы генератора образуют замкнутый контур, в котором действует э. д. с, равная геометрической сумме э. д. с, индуктированных в фазах генератора, т. е. Еа+Ев +Ес. Так как э. д. с. в фазах генератора равны и сдвинуты
на 1/3 периода по фазе, то геометрическая сумма их равна нулю и, следовательно, в замкнутом контуре трехфазной системы, соединенной треугольником, никакого тока при отсутствии внешней нагрузки не будет.
Линейные провода при соединении треугольником подключаются к точкам соединения начала одной фазы и конца другой. Напряжение между линейными проводами равно напряжению между началом и концом одной фазы Таким образом при соединении обмоток генератора треугольником линейное напряжение равно фазному, т. е.
При равномерной нагрузке в фазах обмоток генератора протекают равные токи, сдвинутые относительно фазных напряжений на одинаковые углы , т. е. IAB = IBC=ICA
На рис. 69, а изображена векторная диаграмма, на которой показаны векторы фазных напряжений и токов.
Точки соединений фаз и линейных проводов А, В и С являются точками разветвления, и линейные токи не равны фазным. Приняв за положительное направление фазных и линейных токов, указанное на рис. 69, на основании первого закона Кирхгофа для мгновенных значений токов можно написать следующие выражения:
iA= iAB — iCA; iB= iBC — iAB; iC= iCA- iBC
Так как токи синусоидальны, то заменим алгебраическое вычитание мгновенных значений токов геометрическим вычитанием векторов, изображающих их действующие значения:
Ток линейного провода АIА определится геометрической разностью: векторов фазных токов IAB и ICA.
Для построения вектора линейного тока IA изобразим вектор фазного тока IAB (рис. 69,6), из конца которого построим вектор — ICA, равный и противоположно направленный вектору ICA. Вектор, соединяющий начало вектора IAB с концом вектора — ICA, является вектором линейного тока IA Аналогично могут быть построены векторы линейных токов IB и IC.
Из векторной диаграммы (рис. 69, б) легко вывести соотношение между линейными и фазными токами при соединении обмоток генератора треугольником. Из треугольника оаб можно записать:
откуда
т. е. присоединении обмоток генератора треугольником линейный ток в раза больше фазного (при равномерной нагрузке).
Пример. Трехфазный генератор переменного тока, обмотка статора которого соединена звездой, при полной нагрузке имеет линейное напряжение 220 в при линейном токе 10 а. Определить линейное напряжение и ток при полной нагрузке генератора, если обмотка статора его будет соединена треугольником.
Решение. Фазное напряжение генератора
в
и фазный ток Iф =Iл=10 а.
При соединении обмотки генератора треугольником линейное напряжение равно фазному, т. е.
а линейный ток в раз больше фазного, т. е.
§ 63. ВКЛЮЧЕНИЕ НАГРУЗКИ В СЕТЬ ТРЕХФАЗНОГО ТОКА
В предыдущем параграфе было отмечено, что трехфазный ток передается четырех — или трехпроводной системой. Как при четырехпроводной, так и при трехпроводной системе потребители энергии могут быть включены в сеть звездой и треугольником.
При четырехпроводной системе для соединения приемников энергии звездой их подключают одним концом к линейному проводу, а другим — к нулевому. Выше мы установили, что при соединении обмоток звездой в случае равномерной нагрузки соотношения между линейными и фазными значениями напряжений и токов таковы:
Ток нулевого провода, равный геометрической сумме токов трех фаз, т. е. IO=IA+IB+IC, при равномерной нагрузке равен нулю. Следовательно, в этом случае в нулевом проводе ток протекать не будет и надобность в этом проводе отпадает. Так, например, трехфазные двигатели переменного тока включаются в сеть звездой без нулевого провода.
При неравномерной нагрузке ток в нулевом проводе не равен нулю и этот провод приходится сохранять, хотя его и выполняют обычно меньшего, чем линейные провода, поперечного сечения. В случае отсутствия нулевого провода или его обрыва при неравномерной нагрузке возникает резкое изменение напряжения. Так, например, при отсутствии нагрузки в фазе А и равных нагрузках в фазах В и С в случае отсутствия нулевого провода нагрузки в этих фазах окажутся включенными последовательно на линейное напряжение, которое равномерно распределяется между ними (из условия равенства нагрузки). Следовательно, сопротивления нагрузки в фазах В и С окажутся под напряжением, равным половине линейного напряжения, т. е.