ВУЗы по физике Готовые работы по физике Как писать работы по физике Примеры решения задач по физике Решить задачу по физике онлайн

Вращающий момент асинхронного двигателя


http://counter.yadro.ru/hit?t12.11;rhttp%3A//www.motor-remont.ru/books/1/08_91.html;s1229*691*24;uhttp%3A//www.motor-remont.ru/books/1/08_92.html;0.6019255170039258

§ 93. ВРАЩАЮЩИЙ МОМЕНТ АСИНХРОННОГО ДВИГАТЕЛЯ

Вращающий момент асинхронного двигателя создается при взаимодействии вращающегося магнитного поля статора с токами в проводниках обмотки ротора. Поэтому вращающий момент зави­сит как от магнитного потока статора Фт, так и от силы тока в обмотке ротора I2. Однако в создании вращающего момента уча­ствует только активная мощность, потребляемая машиной из сети. Вследствие этого вращающий момент зависит не от силы тока  в обмотке ротора I2, а только  от его  активной  составляющей, т. е. I2 cos ψ2, где ψ2 — фазный угол между э. д. с. и током в обмотке ротора.

Таким образом,  вращающий  момент  асинхронного  двигателя определяется следующим выражением:

http://www.motor-remont.ru/books/1/index.files/image1330.jpg

где С — конструктивная постоянная машины, зависящая от числа ее полюсов и фаз, числа витков обмотки статора, конструк­тивного выполнения обмотки и принятой системы единиц. При условии  постоянства  приложенного  напряжения  магнит­ный поток остается также почти постоянным при любом изменении нагрузки двигателя.

Таким образом, в выражении вращающего момента величины С и Фт постоянны и вращающий момент пропорционален только активной составляющей тока в обмотке ротора, т. е. http://www.motor-remont.ru/books/1/index.files/image1332.jpg

Изменение нагрузки или тормозного момента на валу двига­теля изменяет и скорость вращения ротора и скольжения.

Изменение скольжения вызывает изменение как силы тока в роторе I2, так и ее активной составляющей I2 cos ψ2/

Можно силу тока в роторе определить отношением э. д. с. к пол­ному сопротивлению, т. е.

http://www.motor-remont.ru/books/1/index.files/image1334.jpg

где Z2, r2 и Х2 — полное, активное и реактивное сопротивления фазы обмотки ротора.

Изменение скольжения изменяет частоту тока ротора. При не­подвижном роторе (n2=0 и S = 1) вращающееся поле с одинако­вой скоростью пересекает проводники обмотки статора и ротора и частота тока в роторе равна частоте тока сети (f2=f1). При уменьшении скольжения обмотка ротора пересекается магнитным полем с меньшей частотой, так что частота тока в роторе умень­шается. Когда ротор вращается синхронно с полем (n2=n1 и S=0), проводники обмотки ротора не пересекаются магнитным полем, так что частота тока в роторе равна нулю f2=0. Таким образом, частота тока в роторе пропорциональна скольжению, т. е. f2=Sf1

Активное сопротивление обмотки ротора почти не зависит от частоты, тогда как э. д.с  и реактивное сопротивление пропорциональны частоте, т. е. изменяются с изменением скольжения, и могут быть определены следующими выражениями:

http://www.motor-remont.ru/books/1/index.files/image1336.jpg

где Е и X — э. д. с. и индуктивное сопротивление  фазы  обмотки неподвижного ротора соответственно.

Таким образом, имеем:

http://www.motor-remont.ru/books/1/index.files/image1338.jpg

и вращающий момент

http://www.motor-remont.ru/books/1/index.files/image1340.jpg

Следовательно, при небольших скольжениях (примерно до 20%), когда SХ мало по сравнению с r2, увеличение скольжения вызывает увеличение вращающего момента, так как при этом воз, растает активная составляющая тока в ротоке (I2соs ψ2). При больших скольжениях (SХ больше, чем r2) увеличение скольже­ния будет вызывать уменьшение вращающего момента. Таким об­разом, при больших скольжениях его увеличение хотя и увеличи­вает силу тока в роторе I2, но ее активная составляющая I2 соs ψ2 и,  следовательно,  вращающий  мо­мент уменьшаются вследствие значительного увеличения реактивного соя противления обмотки ротора.

На   рис.  114  показана  зависимость  вращающего  момента  от скольжения.  При  некотором скольжении Sт  (примерно 20%)  двигатель  развивает  максимальный  мо­мент,  который  определяет  перегрузочную  способность  двигателя  и обычно в 2—3 раза превышает номи­нальный момент.

Устойчивая  работа  двигателя возможна  только  на  восходящей ветви кривой зависимости  момента от скольжения, т. е. при изменении скольжения в пределах от 0 до Sт. Работа двигателя на нисходящей ветви указанной зависимости, т. е. при скольжении S>Sт, невозможна, так как здесь не обеспе­чивается устойчивое равновесие моментов.

Если предположить, что вращающий момент был равен тормоз­ному (Мвр=Мторм) в точках  А и Б, то при случайном нарушении равновесия моментов в одном случае оно восстанавливается, а в другом не восстанавливается. Допустим, что вращающий момент двигателя почему-либо уменьшился (например, при понижений напряжения сети), тогда скольжение начнет увеличиваться. Если равновесие моментов было в точке А, то увеличение скольжения вызовет увеличение вращающего момента двигателя и он станет вновь равным тормозному моменту, т. е. равновесие моментов вос­становится. Если же равновесие моментов было в точке Б, то увеличение скольжения вызовет уменьшение вращающего момента, который будет оставаться всегда меньше тормозного, т. е. равновесие моментов не восстановится и скорость вращения ротора бу­дет непрерывно уменьшаться до полной остановки двигателя.

Если приложить к валу двигателя тормозной момент, больший максимального момента, то равновесие моментов не восстановится и ротор двигателя остановится.

http://www.motor-remont.ru/books/1/index.files/image1342.jpg.

Вращающий момент двигателя пропорционален квадрату при­ложенного напряжения, так как пропорциональны напряжению как магнитный поток, так и сила тока в роторе. Поэтому изменение напряжения в сети вызывает значительное изменение вращаю­щего момента.

http://counter.yadro.ru/hit?t12.11;rhttp%3A//www.motor-remont.ru/books/1/08_92.html;s1229*691*24;uhttp%3A//www.motor-remont.ru/books/1/08_93.html;0.955722119430618

§ 94. РАБОЧИЕ ХАРАКТЕРИСТИКИ АСИНХРОННОГО ДВИГАТЕЛЯ

Рабочие характеристики асинхронного двигателя представляют  собой зависимости скольжения S, числа оборотов ротора n2, раз­виваемого момента М, потребляемого тока I1, расходуемой мощности Р1, коэффициента мощности соs  и к. п. д. η от полезной мощности Р2 на валу машины. Эти характеристики (рис. 115) снимаются три естественных условиях работы двигателя, т. е. двигатель нерегулируемый, частота  f1 и напряжение U1 се­ти остаются постоянными, а изменяется только нагрузка на валу двигателя.

http://www.motor-remont.ru/books/1/index.files/image1344.jpg

При увеличении нагрузки на валу двигателя скольжение возрастет, причем при боль­ших нагрузках скольжение увеличивается несколько быст­рее, чем при малых.

При холостом ходе двигателя п2=n1 или S=0.

При  номинальной  нагрузке  скольжение  обычно  составляет S = 3-5%.

Скорость вращения ротора

http://www.motor-remont.ru/books/1/index.files/image1346.jpg

Так как при увеличении нагрузки на валу двигателя скольжение возрастает, то число оборотов будет уменьшаться. Однако из­менение скорости вращения при увеличении нагрузки от 0 до номи­нальной очень незначительно и не превышает 5%. Поэтому скоро­стная характеристика асинхронного двигателя является жесткой — она имеет очень малый наклон к горизонтальной оси.

Вращающий момент, развиваемый двигателем М, уравновешен тормозным моментом на валу М2 и моментом, идущим на преодоление механических потерь М0, т. е.

http://www.motor-remont.ru/books/1/index.files/image1348.jpg

где Р2 — полезная мощность двигателя,

  2 — угловая скорость ротора.

 При холостом ходе двигателя вращающий момент равен М0; с увеличением нагрузки на валу этот момент также увеличивается, причем за счет некоторого уменьшения скорости ротора увеличение вращающего момента происходит быстрее, чем увеличение полезной мощности на валу.

Наташа

Автор

Наташа — контент-маркетолог и блогер, но все это не мешает ей оставаться адекватным человеком. Верит во все цвета радуги и не верит в теорию всемирного заговора. Увлекается «нефрохиромантией» и тайно мечтает воссоздать дома Александрийскую библиотеку.

Другие статьи


Похожая информация


Распродажа дипломных

Скидка 30% по промокоду Diplom2020