Поведение диполя во внешнем электрическом поле
потенциал и напряженность поля диполя на больших расстояниях от него
Формулу для Е (без вывода) приводим только для того, чтобы отметить, что и потенциал, и напряженность поля диполя убывают быстрее (j~ 1/ r2 , E ~ 1/r3), чем в случае одиночного заряда (j ~ 1/r, Е~ 1/r2).
Поведение диполя во внешнем электрическом поле.
Однородное поле. Внесем диполь в однородное внешнее электрическое поле с напряженностью Е. На заряды диполя будут действовать силы F1 = F2 = qE . Разложим их на составляющие F1¢, F1¢¢ и F2¢, F2¢¢ (см. рис.). Составляющие F1¢¢ и F2¢¢ стремятся растянуть диполь, а составляющие F1¢ и F2¢ создают вращающие моменты и поворачивают диполь (по часовой стрелке) до тех пор, пока он не расположится вдоль силовой линии.
М1 = М2 – вращающие моменты (моменты сил), векторы моментов направлены от нас ^ чертежу; результирующий момент равен М = М1 + М2= 2qE(l/2)sina. Учитывая, что рэл = ql, получим: |
|
вращающий момент (момент сил), действующий на диполь во внешнем поле в скалярной и векторной формах |
Таким образом, в однородном внешнем электрическом поле диполь одновременно будет растягиваться и поворачиваться до тех пор, пока не окажется в положении равновесия, при этом его дипольный момент станет параллельным вектору напряженности внешнего поля.
Неоднородное поле. В этом случае на положительный и отрицательный заряды диполя будут действовать неодинаковые силы (на рис. F2 > F1). Найдем выражение для силы, действующей на диполь для случая, когда напряженность зависит только от одной переменной х. Пусть поле характеризуется градиентом dE/dx. Найдем результирующую силу F = F2 — F1.
изменение напряженности на отрезке l×cosa, a — угол между векторами рэл и Е |
||
результирующая сила [12] и дипольный момент; подставляя, получим: |
||
сила, действующая на диполь в неоднородном электрическом поле |
Таким образом, в неоднородном электрическом поле диполь будет одновременно поворачиваться, растягиваться и втягиваться в область более сильного поля.
Работа по повороту диполя в однородном внешнем электрическом поле.
Если внести диполь в однородное электростатическое поле так, что его дипольный момент будет составлять угол a с вектором напряженности поля Е, силы поля F будут поворачивать диполь (на рис. – по часовой стрелке) до достижения им положения равновесия.
работа при вращательном движении, М — вращающий момент, a — угол поворота |
||
работа по повороту диполя в однородном внешнем электростатическом поле |
||
Если диполь из положения равновесия повернуть так, что между дипольным моментом и вектором напряженности внешнего поля образуется угол a, диполь получит запас потенциальной энергии Wпот. Так как работа равна убыли потенциальной энергии, то в общем случае получим:
Изменение потенциальной энергии диполя во внешнем электростатическом поле |
|
Потенциальная энергия диполя во внешнем поле. Для определения константы надо принять некоторое положение диполя за нулевое (какое хочешь). Скобки в формуле – скалярное произведение указанных векторов. |
Поляризация диэлектриков.
Все вещества состоят из нейтральных атомов или молекул. И в атоме, и в молекуле поровну отрицательно заряженных частиц (электронов) и положительно заряженных ядер. В тех веществах, которые образуют металлические кристаллы,
от каждого атома (или молекулы) отрываются по 1-2 электрона, атомы становятся ионами, образуя кристаллическую решетку, а электроны свободно перемещаются по всему кристаллу. Эти электроны называют свободными зарядами. Такие вещества называют металлическими проводниками, они хорошо проводят электрический ток.. [13] Другие твердые вещества образуются из нейтральных молекул, они практически не проводят электрический ток и их называют диэлектриками (а в электротехнике — изоляторами). Молекулы, особенно многоатомные, имеют сложное строение: ядра атомов в данной молекуле колеблются на определенных равновесных расстояниях друг от друга, вокруг них движется большая часть «своих» электронов, а часть электронов становятся «общими», и движутся вокруг всех ядер данной молекулы. Эти общие электроны как-бы цементируют атомы, и образуется молекула. Все виды молекул, из которых состоят диэлектрики, можно отнести к двум типам: полярные молекулы и неполярные молекулы. У неполярных молекул центры тяжести отрицательных и положительных зарядов совпадают. У полярных — эти центры смещены относительно друг друга, и полярная молекула представляет собой диполь. Примером полярной молекулы является молекула воды (см. рис.).
Если диэлектрик внести во внешнее электрическое поле, на его поверхностях появляются заряды. Это явление называется поляризацией диэлектриков, а сами заряды называются связанными, так как они могут смещаться только в пределах самой молекулы. При снятии внешнего поля поляризация практически мгновенно исчезает. В зависимости от того, из какого типа молекул состоит диэлектрик различают следующие типы поляризации.
1) Деформационная (электронная) поляризация наблюдается для веществ с неполярными молекулами. При внесении такого диэлектрика во внешнее электрическое поле, его молекулы растягиваются и образуют диполь с дипольным моментом рэл. При не очень сильных внешних полях рэл оказывается пропорциональным напряженности поля Е: рэл ~ Е и можно записать:
индуцированный дипольный момент одной молекулы неполярного диэлектрика |
|
a — коэффициент поляризуемости (поляризуемость) молекулы |
Примерами веществ, для которых наблюдается деформационная поляризация, являются: водород Н2, парафин, ССl4 и др.